微观世界
土壤碳
半纤维素
化学
土壤水分
二氧化碳
环境化学
溶解有机碳
分解
木质素
生物量(生态学)
农学
碳循环
生态系统
生态学
生物
有机化学
作者
Yanxia Zhang,Xing Li,Mao Xiao,Ziyi Feng,Yongxiang Yu,Huaiying Yao
标识
DOI:10.1016/j.scitotenv.2021.150714
摘要
The accumulation of microplastics (MPs) in agricultural fields can not only disguise soil organic carbon (SOC) storage but also affect the production of carbon dioxide (CO2) by microbial decomposition. However, little is known about the impact of this emerging pollutant on soil CO2 emissions and the functional genes related to SOC degradation. In the present study, a short-term (30-day) microcosm experiment was performed to investigate the effects of virgin and aged low-density polyethylene (LDPE) MPs on soil CO2 emissions. We also measured functional gene abundances related to starch (sga), hemicellulose (abfA, manB and xylA), cellulose (cex) and lignin (lig and mnp) degradation through a high-throughput quantitative-PCR-based chip. Compared with the soils without MPs, low doses (0.01% and 0.1%) of both virgin and aged MPs had negligible effects on SOC decomposition, whereas a high dose (1.0%) of these two MPs significantly (p < 0.05) accelerated the production of CO2 in soils by 15-17%, showing a dose-dependent effect. The presence of MPs did not significantly affect soil dissolved organic carbon or microbial biomass carbon. A higher metabolic quotient at 1.0% MP concentration indicated that the microbes were stressed and needed more substrates and energy during their metabolic process, which could likely explain the increase in CO2 emission induced by this dose of MPs. Exposure to virgin MPs significantly reduced the functional genes related to hemicellulose (abfA and manB) degradation, whereas increasing the aged MPs concentrations significantly decreased the abundances of functional genes encoding starch (sga), hemicellulose (abfA, manB and xylA), and cellulose (cex) hydrolysis. Overall, we conclude that the low dose (<0.1%) of MPs in the soils has a negligible effect on the production of CO2, but this factor should be considered in evaluating the global C budget in future research as this contaminant reaches a certain threshold (1.0%).
科研通智能强力驱动
Strongly Powered by AbleSci AI