Solving the quantum many-body problem with artificial neural networks

单一制国家 量子 人工神经网络 计算机科学 波函数 强化学习 量子机器学习 量子计算机 旋转 代表(政治) 功能(生物学) 人工智能 隐变量理论 量子态 统计物理学 理论计算机科学 物理 量子力学 政治 生物 法学 进化生物学 凝聚态物理 政治学
作者
Giuseppe Carleo,Matthias Troyer
出处
期刊:Science [American Association for the Advancement of Science (AAAS)]
卷期号:355 (6325): 602-606 被引量:1722
标识
DOI:10.1126/science.aag2302
摘要

The challenge posed by the many-body problem in quantum physics originates from the difficulty of describing the non-trivial correlations encoded in the exponential complexity of the many-body wave function. Here we demonstrate that systematic machine learning of the wave function can reduce this complexity to a tractable computational form, for some notable cases of physical interest. We introduce a variational representation of quantum states based on artificial neural networks with variable number of hidden neurons. A reinforcement-learning scheme is then demonstrated, capable of either finding the ground-state or describing the unitary time evolution of complex interacting quantum systems. We show that this approach achieves very high accuracy in the description of equilibrium and dynamical properties of prototypical interacting spins models in both one and two dimensions, thus offering a new powerful tool to solve the quantum many-body problem.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
文忉嫣完成签到,获得积分10
刚刚
刚刚
1秒前
落后秋柳完成签到,获得积分20
1秒前
Akim应助zz采纳,获得10
1秒前
2秒前
三九发布了新的文献求助10
3秒前
科研通AI5应助czq采纳,获得30
3秒前
4秒前
4秒前
4秒前
坦率的松完成签到,获得积分10
4秒前
传奇3应助贤惠的正豪采纳,获得10
5秒前
111发布了新的文献求助10
5秒前
三寒鸦完成签到,获得积分10
5秒前
小木棉发布了新的文献求助10
5秒前
5秒前
少年郎完成签到,获得积分20
6秒前
CipherSage应助123lura采纳,获得10
6秒前
七七完成签到,获得积分10
6秒前
科研通AI2S应助小余采纳,获得10
6秒前
苹果骑士完成签到,获得积分10
6秒前
6秒前
shi hui应助jbhb采纳,获得10
7秒前
7秒前
7秒前
JUSTs0so发布了新的文献求助10
7秒前
长夜变清早完成签到,获得积分10
8秒前
9秒前
9秒前
otaro发布了新的文献求助10
10秒前
yinbin完成签到,获得积分10
10秒前
10秒前
独木舟发布了新的文献求助10
10秒前
白衣未央发布了新的文献求助10
10秒前
脑洞疼应助现实的曼荷采纳,获得10
12秒前
12秒前
轩辕德地发布了新的文献求助10
12秒前
三九完成签到,获得积分10
13秒前
orixero应助少年郎采纳,获得10
13秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527723
求助须知:如何正确求助?哪些是违规求助? 3107826
关于积分的说明 9286663
捐赠科研通 2805577
什么是DOI,文献DOI怎么找? 1539998
邀请新用户注册赠送积分活动 716878
科研通“疑难数据库(出版商)”最低求助积分说明 709762