单一制国家
量子
人工神经网络
计算机科学
波函数
强化学习
量子机器学习
量子计算机
旋转
代表(政治)
功能(生物学)
人工智能
隐变量理论
量子态
统计物理学
理论计算机科学
物理
量子力学
政治
生物
进化生物学
法学
凝聚态物理
政治学
作者
Giuseppe Carleo,Matthias Troyer
出处
期刊:Science
[American Association for the Advancement of Science (AAAS)]
日期:2017-02-10
卷期号:355 (6325): 602-606
被引量:1722
标识
DOI:10.1126/science.aag2302
摘要
The challenge posed by the many-body problem in quantum physics originates from the difficulty of describing the non-trivial correlations encoded in the exponential complexity of the many-body wave function. Here we demonstrate that systematic machine learning of the wave function can reduce this complexity to a tractable computational form, for some notable cases of physical interest. We introduce a variational representation of quantum states based on artificial neural networks with variable number of hidden neurons. A reinforcement-learning scheme is then demonstrated, capable of either finding the ground-state or describing the unitary time evolution of complex interacting quantum systems. We show that this approach achieves very high accuracy in the description of equilibrium and dynamical properties of prototypical interacting spins models in both one and two dimensions, thus offering a new powerful tool to solve the quantum many-body problem.
科研通智能强力驱动
Strongly Powered by AbleSci AI