In this article, the rapid synthesis of colloidal, spherical polymer resins via enhanced copolymerization and polycondensation of resorcinol with formaldehyde is presented. The ultrasound-mediated technique assembles perfectly spherical resins in less than 5 min due to generated active species and free radicals produced in an aqueous ammonia-ethanol-water solvent. In this report, numerous controlled experiments account for and support the important role of high intensity ultrasounds in the rapid cluster formation, condensation, and gelation process of resorcinol with formaldehyde in the presence of ammonia catalyst. After a controlled heat treatment process, amorphous carbon spheres are obtained from these spherical polymer resins. The effect of temperature (up to 1100 °C) on the structural evolution of these carbon spheres is meticulously studied which is lacking in the previous literature. The resorcinol-formaldehyde resins carbonized at 600 and 900 °C demonstrate BET surface areas of 592.4 m(2)/g and 952.5 m(2)/g with specific capacitances of 17.5, and 33.5 F/g (scan rate of 5 mV/s), respectively.