The Adverse Outcome Pathway: A Conceptual Framework to Support Toxicity Testing in the Twenty-First Century

不良结局途径 计算机科学 背景(考古学) 钥匙(锁) 文档 结果(博弈论) 事件(粒子物理) 风险分析(工程) 数据科学 生化工程 计算生物学 工程类 生物 医学 计算机安全 物理 程序设计语言 古生物学 数理经济学 量子力学 数学
作者
Edward Perkins,Natàlia García‐Reyero,Stephen W. Edwards,Clemens Wittwehr,Daniel L. Villeneuve,Daniel F. Lyons,Gerald T. Ankley
出处
期刊:Methods in pharmacology and toxicology 卷期号:: 1-26 被引量:15
标识
DOI:10.1007/978-1-4939-2778-4_1
摘要

The need to rapidly characterize the risk of large numbers of chemicals has moved the traditional toxicological paradigm from animal testing to a pathway-based approach using in vitro assay systems and modeling where possible. Adverse Outcome Pathways (AOPs) provide a conceptual framework that can be used to link in vitro assay results to whole animal effects in a pathway context. AOPs are defined and examples are provided to demonstrate key characteristics of AOPs. To support development and application of AOPs, a knowledge base has been developed containing a Wiki site designed to permit documentation of AOPs in a crowd-sourced manner. Both empirical and computational methods are demonstrated to play a significant role in AOP development. The combination of computational approaches, including different modeling efforts, together with apical end points within the pathway-based framework will allow for a better understanding of the linkage of events from a molecular initiating event to a potential adverse outcome, therefore defining key events, AOPs, and even networks of AOPS. While these approaches are indeed very promising, the ability to understand and define key events and key event relationships will remain one of the more complex and challenging efforts within AOP development. In order to make AOPs useful for risk assessment these challenges need to be understood and overcome. An interdisciplinary approach including apical and molecular measurements, computational, and modeling efforts is currently being one of the most promising approaches to ensure AOPs become the useful framework they were designed to be.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
彭于晏应助zy采纳,获得10
刚刚
精明玲完成签到 ,获得积分10
1秒前
1秒前
乐乐完成签到,获得积分10
2秒前
VirSnorlax完成签到,获得积分10
2秒前
SciGPT应助LL采纳,获得10
2秒前
妖孽宇发布了新的文献求助10
3秒前
aa完成签到,获得积分20
3秒前
aaaa完成签到,获得积分10
3秒前
马香芦完成签到,获得积分10
4秒前
西红柿完成签到,获得积分10
5秒前
6秒前
懵懂的冬灵完成签到,获得积分10
6秒前
碧蓝可仁完成签到 ,获得积分10
7秒前
王拉拉完成签到 ,获得积分10
7秒前
西西完成签到,获得积分10
7秒前
深情安青应助mkmimii采纳,获得10
8秒前
上官若男应助小王采纳,获得10
8秒前
bkagyin应助旦皋采纳,获得10
8秒前
Orange应助欣欣采纳,获得10
9秒前
玄学大哥完成签到,获得积分10
9秒前
9秒前
9秒前
kk完成签到,获得积分10
9秒前
ww007完成签到,获得积分10
11秒前
科研通AI5应助hahaha123213123采纳,获得10
11秒前
misstwo完成签到,获得积分10
12秒前
研友_ZzrwqZ发布了新的文献求助10
12秒前
JY'完成签到,获得积分10
13秒前
一只小鲨鱼完成签到,获得积分10
14秒前
漂亮的哈密瓜完成签到,获得积分10
14秒前
量子星尘发布了新的文献求助10
14秒前
15秒前
LL发布了新的文献求助10
15秒前
苏苏完成签到,获得积分10
16秒前
16秒前
fabc5653219完成签到,获得积分10
17秒前
hkunyu完成签到 ,获得积分10
17秒前
jiao完成签到,获得积分10
18秒前
18秒前
高分求助中
【提示信息,请勿应助】关于scihub 10000
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] 3000
徐淮辽南地区新元古代叠层石及生物地层 3000
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
Global Eyelash Assessment scale (GEA) 1000
Picture Books with Same-sex Parented Families: Unintentional Censorship 550
Research on Disturbance Rejection Control Algorithm for Aerial Operation Robots 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4038388
求助须知:如何正确求助?哪些是违规求助? 3576106
关于积分的说明 11374447
捐赠科研通 3305798
什么是DOI,文献DOI怎么找? 1819322
邀请新用户注册赠送积分活动 892672
科研通“疑难数据库(出版商)”最低求助积分说明 815029