The Adverse Outcome Pathway: A Conceptual Framework to Support Toxicity Testing in the Twenty-First Century

不良结局途径 计算机科学 背景(考古学) 钥匙(锁) 文档 结果(博弈论) 事件(粒子物理) 风险分析(工程) 数据科学 生化工程 计算生物学 工程类 生物 医学 计算机安全 物理 程序设计语言 古生物学 数理经济学 量子力学 数学
作者
Edward Perkins,Natàlia García‐Reyero,Stephen W. Edwards,Clemens Wittwehr,Daniel L. Villeneuve,Daniel F. Lyons,Gerald T. Ankley
出处
期刊:Methods in pharmacology and toxicology 卷期号:: 1-26 被引量:15
标识
DOI:10.1007/978-1-4939-2778-4_1
摘要

The need to rapidly characterize the risk of large numbers of chemicals has moved the traditional toxicological paradigm from animal testing to a pathway-based approach using in vitro assay systems and modeling where possible. Adverse Outcome Pathways (AOPs) provide a conceptual framework that can be used to link in vitro assay results to whole animal effects in a pathway context. AOPs are defined and examples are provided to demonstrate key characteristics of AOPs. To support development and application of AOPs, a knowledge base has been developed containing a Wiki site designed to permit documentation of AOPs in a crowd-sourced manner. Both empirical and computational methods are demonstrated to play a significant role in AOP development. The combination of computational approaches, including different modeling efforts, together with apical end points within the pathway-based framework will allow for a better understanding of the linkage of events from a molecular initiating event to a potential adverse outcome, therefore defining key events, AOPs, and even networks of AOPS. While these approaches are indeed very promising, the ability to understand and define key events and key event relationships will remain one of the more complex and challenging efforts within AOP development. In order to make AOPs useful for risk assessment these challenges need to be understood and overcome. An interdisciplinary approach including apical and molecular measurements, computational, and modeling efforts is currently being one of the most promising approaches to ensure AOPs become the useful framework they were designed to be.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
memebao完成签到,获得积分10
1秒前
fd163c应助大卷采纳,获得20
3秒前
炙热的萤发布了新的文献求助10
3秒前
4秒前
静夜谧思完成签到,获得积分10
5秒前
Lucas应助yakami采纳,获得10
6秒前
kk完成签到,获得积分10
6秒前
6秒前
LF-Scie完成签到,获得积分10
8秒前
学术z完成签到,获得积分10
8秒前
刻苦大米完成签到,获得积分10
8秒前
LZQ应助小可爱采纳,获得10
8秒前
大模型应助科研通管家采纳,获得10
9秒前
10秒前
Martin应助科研通管家采纳,获得10
10秒前
桐桐应助科研通管家采纳,获得10
10秒前
顾矜应助科研通管家采纳,获得10
10秒前
汉堡包应助科研通管家采纳,获得10
10秒前
10秒前
领导范儿应助科研通管家采纳,获得10
10秒前
10秒前
天天快乐应助科研通管家采纳,获得10
10秒前
Orange应助科研通管家采纳,获得10
10秒前
星辰大海应助科研通管家采纳,获得10
10秒前
斯文败类应助科研通管家采纳,获得10
10秒前
哎呦喂完成签到,获得积分10
11秒前
CEJ发布了新的文献求助10
12秒前
SYLH应助小狸采纳,获得10
13秒前
小二郎应助mia采纳,获得10
15秒前
斯文败类应助Franky采纳,获得10
16秒前
丘比特应助von采纳,获得10
16秒前
丘比特应助炙热的萤采纳,获得10
17秒前
刻苦大米发布了新的文献求助10
17秒前
李健的粉丝团团长应助zxy采纳,获得10
18秒前
Ava应助hgh采纳,获得10
20秒前
CEJ完成签到,获得积分10
20秒前
在望应助April采纳,获得10
21秒前
22秒前
22秒前
香蕉觅云应助潘宋采纳,获得10
22秒前
高分求助中
All the Birds of the World 4000
Production Logging: Theoretical and Interpretive Elements 3000
Les Mantodea de Guyane Insecta, Polyneoptera 2000
Am Rande der Geschichte : mein Leben in China / Ruth Weiss 1500
CENTRAL BOOKS: A BRIEF HISTORY 1939 TO 1999 by Dave Cope 1000
Machine Learning Methods in Geoscience 1000
Resilience of a Nation: A History of the Military in Rwanda 888
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3736001
求助须知:如何正确求助?哪些是违规求助? 3279686
关于积分的说明 10017009
捐赠科研通 2996428
什么是DOI,文献DOI怎么找? 1644048
邀请新用户注册赠送积分活动 781753
科研通“疑难数据库(出版商)”最低求助积分说明 749425