The Adverse Outcome Pathway: A Conceptual Framework to Support Toxicity Testing in the Twenty-First Century

不良结局途径 计算机科学 背景(考古学) 钥匙(锁) 文档 结果(博弈论) 事件(粒子物理) 风险分析(工程) 数据科学 生化工程 计算生物学 工程类 生物 医学 计算机安全 古生物学 物理 数学 数理经济学 量子力学 程序设计语言
作者
Edward Perkins,Natàlia García‐Reyero,Stephen W. Edwards,Clemens Wittwehr,Daniel L. Villeneuve,Daniel F. Lyons,Gerald T. Ankley
出处
期刊:Methods in pharmacology and toxicology 卷期号:: 1-26 被引量:15
标识
DOI:10.1007/978-1-4939-2778-4_1
摘要

The need to rapidly characterize the risk of large numbers of chemicals has moved the traditional toxicological paradigm from animal testing to a pathway-based approach using in vitro assay systems and modeling where possible. Adverse Outcome Pathways (AOPs) provide a conceptual framework that can be used to link in vitro assay results to whole animal effects in a pathway context. AOPs are defined and examples are provided to demonstrate key characteristics of AOPs. To support development and application of AOPs, a knowledge base has been developed containing a Wiki site designed to permit documentation of AOPs in a crowd-sourced manner. Both empirical and computational methods are demonstrated to play a significant role in AOP development. The combination of computational approaches, including different modeling efforts, together with apical end points within the pathway-based framework will allow for a better understanding of the linkage of events from a molecular initiating event to a potential adverse outcome, therefore defining key events, AOPs, and even networks of AOPS. While these approaches are indeed very promising, the ability to understand and define key events and key event relationships will remain one of the more complex and challenging efforts within AOP development. In order to make AOPs useful for risk assessment these challenges need to be understood and overcome. An interdisciplinary approach including apical and molecular measurements, computational, and modeling efforts is currently being one of the most promising approaches to ensure AOPs become the useful framework they were designed to be.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
guochang完成签到,获得积分10
刚刚
CodeCraft应助沉默的企鹅采纳,获得10
刚刚
科目三应助一棵西兰花采纳,获得10
刚刚
刚刚
鲤鱼灵波完成签到,获得积分20
1秒前
Zoey626完成签到,获得积分10
4秒前
guochang发布了新的文献求助10
4秒前
4秒前
5秒前
5秒前
喈喈青鸟完成签到,获得积分10
6秒前
Need_Knowledge完成签到 ,获得积分10
7秒前
dyyy发布了新的文献求助30
9秒前
M星人发布了新的文献求助30
10秒前
传奇3应助西叶采纳,获得10
10秒前
ypres发布了新的文献求助10
11秒前
吕健完成签到,获得积分10
12秒前
cherish完成签到,获得积分10
13秒前
16秒前
欢呼洋葱应助吕健采纳,获得10
16秒前
19秒前
Su发布了新的文献求助10
19秒前
高兴的小完成签到,获得积分10
20秒前
20秒前
围城完成签到,获得积分10
20秒前
行路1发布了新的文献求助10
21秒前
24秒前
请叫我风吹麦浪应助Leiale采纳,获得10
24秒前
24秒前
毛豆应助zxy采纳,获得10
25秒前
25秒前
毛豆应助踏实紫烟采纳,获得10
26秒前
哈哈哈哈发布了新的文献求助10
27秒前
27秒前
毛豆应助dyyy采纳,获得10
28秒前
毛豆应助dyyy采纳,获得10
28秒前
qrwyqjbsd应助尤腻腻采纳,获得10
29秒前
alilu发布了新的文献求助10
30秒前
zzz完成签到,获得积分20
31秒前
31秒前
高分求助中
Востребованный временем 2500
Agaricales of New Zealand 1: Pluteaceae - Entolomataceae 1040
Healthcare Finance: Modern Financial Analysis for Accelerating Biomedical Innovation 1000
지식생태학: 생태학, 죽은 지식을 깨우다 600
海南省蛇咬伤流行病学特征与预后影响因素分析 500
Neuromuscular and Electrodiagnostic Medicine Board Review 500
ランス多機能化技術による溶鋼脱ガス処理の高効率化の研究 500
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 纳米技术 内科学 物理 化学工程 计算机科学 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 电极
热门帖子
关注 科研通微信公众号,转发送积分 3463172
求助须知:如何正确求助?哪些是违规求助? 3056584
关于积分的说明 9052925
捐赠科研通 2746458
什么是DOI,文献DOI怎么找? 1506929
科研通“疑难数据库(出版商)”最低求助积分说明 696226
邀请新用户注册赠送积分活动 695808