Experiments

材料科学
作者
Chung-Shu Wu,Michael S. Hamada
出处
期刊:Wiley series in probability and statistics 被引量:400
标识
DOI:10.1002/9781119470007
摘要

Preface to the Second Edition. Preface to the First Edition. Suggestions of Topics for Instructors. List of Experiments and Data Sets. 1 Basic Concepts for Experimental Design and Introductory Regression Analysis. 1.1 Introduction and Historical Perspective. 1.2 A Systematic Approach to the Planning and Implementation of Experiments. 1.3 Fundamental Principles: Replication, Randomization, and Blocking. 1.4 Simple Linear Regression. 1.5 Testing of Hypothesis and Interval Estimation. 1.6 Multiple Linear Regression. 1.7 Variable Selection in Regression Analysis. 1.8 Analysis of Air Pollution Data. 1.9 Practical Summary. 2 Experiments with a Single Factor. 2.1 One-Way Layout. 2.2 Multiple Comparisons. 2.3 Quantitative Factors and Orthogonal Polynomials. 2.4 Expected Mean Squares and Sample Size Determination. 2.5 One-Way Random Effects Model. 2.6 Residual Analysis: Assessment of Model Assumptions. 2.7 Practical Summary. 3 Experiments with More Than One Factor. 3.1 Paired Comparison Designs. 3.2 Randomized Block Designs. 3.3 Two-Way Layout: Factors With Fixed Levels. 3.4 Two-Way Layout: Factors With Random Levels. 3.5 Multi-Way Layouts. 3.6 Latin Square Designs: Two Blocking Variables. 3.7 Graeco-Latin Square Designs. 3.8 Balanced Incomplete Block Designs. 3.9 Split-Plot Designs. 3.10 Analysis of Covariance: Incorporating Auxiliary Information. 3.11 Transformation of the Response. 3.12 Practical Summary. 4 Full Factorial Experiments at Two Levels. 4.1 An Epitaxial Layer Growth Experiment. 4.2 Full Factorial Designs at Two Levels: A General Discussion. 4.3 Factorial Effects and Plots. 4.4 Using Regression to Compute Factorial Effects. 4.5 ANOVA Treatment of Factorial Effects. 4.6 Fundamental Principles for Factorial Effects: Effect Hierarchy, Effect Sparsity, and Effect Heredity. 4.7 Comparisons with the One-Factor-at-a-Time Approach. 4.8 Normal and Half-Normal Plots for Judging Effect Significance. 4.9 Lenth's Method: Testing Effect Significance for Experiments Without Variance Estimates. 4.10 Nominal-the-Best Problem and Quadratic Loss Function. 4.11 Use of Log Sample Variance for Dispersion Analysis. 4.12 Analysis of Location and Dispersion: Revisiting the Epitaxial Layer Growth Experiment. 4.13 Test of Variance Homogeneity and Pooled Estimate of Variance. 4.14 Studentized Maximum Modulus Test: Testing Effect Significance for Experiments with Variance Estimates. 4.15 Blocking and Optimal Arrangement of 2 k Factorial Designs in 2 q Blocks. 4.16 Practical Summary. 5 Fractional Factorial Experiments at Two Levels. 5.1 A Leaf Spring Experiment. 5.2 Fractional Factorial Designs: Effect Aliasing and the Criteria Of Resolution and Minimum Aberration. 5.3 Analysis of Fractional Factorial Experiments. 5.4 Techniques for Resolving the Ambiguities in Aliased Effects. 5.5 Selection of 2 k-p Designs Using Minimum Aberration and Related Criteria. 5.6 Blocking in Fractional Factorial Designs. 5.7 Practical Summary. 6 Full Factorial and Fractional Factorial Experiments at Three Levels. 6.1 A Seat-Belt Experiment. 6.2 Larger-the-Better and Smaller-the-Better Problems. 6.3 3 k Full Factorial Designs. 6.4 3 k-p Fractional Factorial Designs. 6.5 Simple Analysis Methods: Plots and Analysis of Variance. 6.6 An Alternative Analysis Method. 6.7 Analysis Strategies for Multiple Responses I: Out-of-Spec Probabilities. 6.8 Blocking in 3 k and 3 k-p Designs. 6.9 Practical Summary. 7 Other Design and Analysis Techniques for Experiments at More Than Two Levels. 7.1 A Router Bit Experiment Based on a Mixed Two-Level and Four-Level Design. 7.2 Method of Replacement and Construction of 2 m 4 n Designs. 7.3 Minimum Aberration 2 m 4 n Designs with n = 1, 2. 7.4 An Analysis Strategy for 2 m 4 n Experiments. 7.5 Analysis of the Router Bit Experiment. 7.6 A Paint Experiment Based on a Mixed Two-Level and Three-Level Design. 7.7 Design and Analysis of 36-Run Experiments at Two And Three Levels. 7.8 r k-p Fractional Factorial Designs for any Prime Number r . 7.9 Related Factors: Method of Sliding Levels, Nested Effects Analysis, and Response Surface Modeling. 7.10 Practical Summary. 8 Nonregular Designs: Construction and Properties. 8.1 Two Experiments: Weld-Repaired Castings and Blood Glucose Testing. 8.2 Some Advantages of Nonregular Designs Over the 2 k-p and 3 k-p Series of Designs. 8.3 A Lemma on Orthogonal Arrays. 8.4 Plackett-Burman Designs and Hall's Designs. 8.5 A Collection of Useful Mixed-Level Orthogonal Arrays. 8.6 Construction of Mixed-Level Orthogonal Arrays Based on Difference Matrices. 8.7 Construction of Mixed-Level Orthogonal Arrays Through the Method of Replacement. 8.8 Orthogonal Main-Effect Plans Through Collapsing Factors. 8.9 Practical Summary. 9 Experiments with Complex Aliasing. 9.1 Partial Aliasing of Effects and the Alias Matrix. 9.2 Traditional Analysis Strategy: Screening Design and Main Effect Analysis. 9.3 Simplification of Complex Aliasing via Effect Sparsity. 9.4 An Analysis Strategy for Designs with Complex Aliasing. 9.5 A Bayesian Variable Selection Strategy for Designs with Complex Aliasing. 9.6 Supersaturated Designs: Design Construction and Analysis. 9.7 Practical Summary. 10 Response Surface Methodology. 10.1 A Ranitidine Separation Experiment. 10.2 Sequential Nature of Response Surface Methodology. 10.3 From First-Order Experiments to Second-Order Experiments: Steepest Ascent Search and Rectangular Grid Search. 10.4 Analysis of Second-Order Response Surfaces. 10.5 Analysis of the Ranitidine Experiment. 10.6 Analysis Strategies for Multiple Responses II: Contour Plots and the Use of Desirability Functions. 10.7 Central Composite Designs. 10.8 Box-Behnken Designs and Uniform Shell Designs. 10.9 Practical Summary. 11 Introduction to Robust Parameter Design. 11.1 A Robust Parameter Design Perspective of the Layer Growth and Leaf Spring Experiments. 11.2 Strategies for Reducing Variation. 11.3 Noise (Hard-to-Control) Factors. 11.4 Variation Reduction Through Robust Parameter Design. 11.5 Experimentation and Modeling Strategies I: Cross Array. 11.6 Experimentation and Modeling Strategies II: Single Array and Response Modeling. 11.7 Cross Arrays: Estimation Capacity and Optimal Selection. 11.8 Choosing Between Cross Arrays and Single Arrays. 11.9 Signal-to-Noise Ratio and Its Limitations for Parameter Design Optimization. 11.10 Further Topics. 11.11 Practical Summary. 12 Robust Parameter Design for Signal-Response Systems. 12.1 An Injection Molding Experiment. 12.2 Signal-Response Systems and their Classification. 12.3 Performance Measures for Parameter Design Optimization. 12.4 Modeling and Analysis Strategies. 12.5 Analysis of the Injection Molding Experiment. 12.6 Choice of Experimental Plans. 12.7 Practical Summary. 13 Experiments for Improving Reliability. 13.1 Experiments with Failure Time Data. 13.2 Regression Model for Failure Time Data. 13.3 A Likelihood Approach for Handling Failure Time Data with Censoring. 13.4 Design-Dependent Model Selection Strategies. 13.5 A Bayesian Approach to Estimation and Model Selection for Failure Time Data. 13.6 Analysis of Reliability Experiments with Failure Time Data. 13.7 Other Types of Reliability Data. 13.8 Practical Summary. 14 Analysis of Experiments with Nonnormal Data. 14.1 A Wave Soldering Experiment with Count Data. 14.2 Generalized Linear Models. 14.3 Likelihood-Based Analysis of Generalized Linear Models. 14.4 Likelihood-Based Analysis of the Wave Soldering Experiment. 14.5 Bayesian Analysis of Generalized Linear Models. 14.6 Bayesian Analysis of the Wave Soldering Experiment. 14.7 Other Uses and Extensions of Generalized Linear Models and Regression Models for Nonnormal Data. 14.8 Modeling and Analysis for Ordinal Data. 14.9 Analysis of Foam Molding Experiment. 14.10 Scoring: A Simple Method for Analyzing Ordinal Data. 14.11 Practical Summary. Appendix A Upper Tail Probabilities of the Standard Normal Distribution. Appendix B Upper Percentiles of the t Distribution. Appendix C Upper Percentiles of the chi 2 Distribution. Appendix D Upper Percentiles of the F Distribution. Appendix E Upper Percentiles of the Studentized Range Distribution. Appendix F Upper Percentiles of the Studentized Maximum Modulus Distribution. Appendix G Coefficients of Orthogonal Contrast Vectors. Appendix H Critical Values for Lenth's Method. Author Index. Subject Index.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
刚刚
刚刚
Hello应助体贴德地采纳,获得10
1秒前
2秒前
FashionBoy应助温暖幻桃采纳,获得10
3秒前
Standard发布了新的文献求助10
4秒前
妮妮完成签到,获得积分20
4秒前
Auston_zhong应助糊涂涂采纳,获得10
5秒前
5秒前
qiqi发布了新的文献求助10
6秒前
鱼鱼鱼发布了新的文献求助10
6秒前
飞扬发布了新的文献求助10
6秒前
gy发布了新的文献求助10
6秒前
TaoJ发布了新的文献求助10
7秒前
8秒前
Akim应助cleverV采纳,获得20
9秒前
susan完成签到 ,获得积分10
10秒前
丘比特应助张俊敏采纳,获得10
10秒前
香蕉觅云应助吴雨峰采纳,获得10
11秒前
11秒前
大胆的迎夏完成签到 ,获得积分10
12秒前
曾经的慕灵完成签到,获得积分10
13秒前
13秒前
与你共奋完成签到,获得积分20
14秒前
15秒前
温馨完成签到,获得积分10
18秒前
20秒前
Bellis发布了新的文献求助10
20秒前
20秒前
vvA11应助开心采纳,获得10
21秒前
花园荆棘完成签到,获得积分10
22秒前
体贴德地发布了新的文献求助10
23秒前
啊哈发布了新的文献求助10
24秒前
25秒前
26秒前
nortun发布了新的文献求助10
26秒前
慧木完成签到 ,获得积分10
27秒前
SS1025861完成签到 ,获得积分10
27秒前
端庄谷南完成签到 ,获得积分10
28秒前
高分求助中
Continuum Thermodynamics and Material Modelling 2000
こんなに痛いのにどうして「なんでもない」と医者にいわれてしまうのでしょうか 510
Seven new species of the Palaearctic Lauxaniidae and Asteiidae (Diptera) 400
Nonhuman Primate Models in Biomedical Research: State of the Science and Future Needs 300
Fundamentals of Medical Device Regulations, Fifth Edition(e-book) 300
A method for calculating the flow in a centrifugal impeller when entropy gradients are present 240
A proof-of-concept study on a universal standard kit to evaluate the risks of inspectors for their foundational ability of visual inspection of injectable drug products 200
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3696486
求助须知:如何正确求助?哪些是违规求助? 3248358
关于积分的说明 9857190
捐赠科研通 2959797
什么是DOI,文献DOI怎么找? 1622923
邀请新用户注册赠送积分活动 768341
科研通“疑难数据库(出版商)”最低求助积分说明 741511