丝素
材料科学
生物相容性
芯(光纤)
丝绸
复合材料
纳米技术
高分子科学
冶金
作者
Guiyang Liu,Qiang Tang,Yanni Yu,Jing Li,Jing‐Wan Luo,Mingzhong Li
摘要
In the process of preparing core–sheath fibers via coaxial electrospinning, the relative evaporation rates of core and sheath solvents play a key role in the formation of the core–sheath structure of the fiber. Both silk fibroin (SF) and poly(lactide-co-ε-caprolactone) (PLCL) have good biocompatibility and biodegradability. SF has better cell affinity than PLCL, whereas PLCL has higher breaking strength and elongation than SF. In this work, hexafluoroisopropanol (HFIP)-formic acid (volume ratio 8:2), HFIP and HFIP–dichloromethane (volume ratio 8:2) were used to dissolve PLCL as the core solutions, and HFIP was used to dissolve SF as the sheath solution. Then, core–sheath structured SF/PLCL (C-SF/PLCL) fibers were prepared by coaxial electrospinning with the core and sheath solutions. Transmission electron microscopy images indicated the existence of the core–shell structure of the fibers, and energy dispersive X-ray analysis results revealed that the fiber mat with the greatest content of core–shell structure fibers was obtained when the core solvent was HFIP–dichloromethane (volume ratio 8:2). Tensile tests showed that the C-SF/PLCL fiber mat displayed improved tensile properties, with strength and elongation that were significantly higher than those of the pure SF mat. The C-SF/PLCL fiber mat was further investigated as a scaffold for culturing EA.hy926 cells, and the results showed that the fiber mat permitted cellular adhesion, proliferation and spreading in a manner similar to that of the pure SF fiber mat. These results indicated that the coaxial electrospun SF/PLCL fiber mat could be considered a promising candidate for tissue engineering scaffolds for blood vessels. Copyright © 2014 John Wiley & Sons, Ltd.
科研通智能强力驱动
Strongly Powered by AbleSci AI