In situ crystallization for fabrication of a core–satellite structured BiOBr–CdS heterostructure with excellent visible-light-responsive photoreactivity

材料科学 光催化 光致发光 光电流 异质结 可见光谱 透射电子显微镜 化学工程 纳米颗粒 制作 光电子学 光化学 纳米技术 催化作用 化学 医学 生物化学 替代医学 病理 工程类
作者
Yuxi Guo,Hongwei Huang,Ying He,Na Tian,Tierui Zhang,Paul K. Chu,Qi An,Yihe Zhang
出处
期刊:Nanoscale [The Royal Society of Chemistry]
卷期号:7 (27): 11702-11711 被引量:138
标识
DOI:10.1039/c5nr02246k
摘要

We demonstrate the fabrication of a core–satellite structured BiOBr–CdS photocatalyst with highly efficient photocatalytic reactivity via a facile in situ crystallization approach at room temperature. The transmission electron microscopy (TEM) and high-resolution transmission electron microscopy (HR-TEM) results reveal that the BiOBr flakes are surrounded by CdS particles. The coverage of the satellites on the surface of the BiOBr nanosheets could be controlled by changing the content of the CdS, which contributes to the enhanced level of photocatalytic performance. The UV–vis diffuse reflection spectra demonstrate that the visible light absorption of the BiOBr–CdS photocatalyst is also enhanced by the CdS loaded. The excellent structural and spectral properties endow the BiOBr–CdS heterojunctions with improved photocatalytic performance pertaining to bisphenol A (BPA) degradation and photocurrent generation. Under visible light irradiation, the optimum photocatalytic activity of BiOBr–CdS at a molar ratio of 1 : 5 (CdS/BiOBr) is almost 2.8 times and 24.6 times as high as that of pure BiOBr and CdS. The remarkably enhanced photoreactivity should be attributed to the match in the energy levels and close core–satellite structural coupling between the CdS and BiOBr, which greatly facilitates the separation and transfer of photoinduced electron–hole pairs, as confirmed by photoluminescence (PL) and electrochemical impedance spectra (EIS). The present work sheds new light on the construction of highly efficient core–satellite heterojunctional photocatalysts for practical applications.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
寻道图强应助zf2023采纳,获得30
1秒前
义气的碧玉完成签到,获得积分10
1秒前
2秒前
李健应助teriteri采纳,获得10
2秒前
所所应助Tsing采纳,获得10
2秒前
隐形曼青应助黄俊采纳,获得10
2秒前
2秒前
开心蛋挞发布了新的文献求助10
2秒前
2秒前
平常天佑发布了新的文献求助10
3秒前
caocao完成签到,获得积分20
3秒前
大地发布了新的文献求助10
4秒前
嘟嘟嘟嘟完成签到 ,获得积分10
4秒前
5秒前
桐桐应助wu采纳,获得10
5秒前
陈功人士发布了新的文献求助10
6秒前
7秒前
7秒前
8秒前
南笙完成签到,获得积分10
8秒前
Geo_new发布了新的文献求助10
9秒前
压缩应助科研通管家采纳,获得10
9秒前
传奇3应助zyqi采纳,获得10
9秒前
斯文败类应助科研通管家采纳,获得10
9秒前
科研通AI2S应助科研通管家采纳,获得10
9秒前
Quinny应助科研通管家采纳,获得10
9秒前
9秒前
Orange应助科研通管家采纳,获得30
9秒前
田様应助开心蛋挞采纳,获得10
9秒前
科研通AI2S应助科研通管家采纳,获得10
9秒前
9秒前
共享精神应助科研通管家采纳,获得10
9秒前
乐乐应助科研通管家采纳,获得10
9秒前
香蕉觅云应助科研通管家采纳,获得10
9秒前
9秒前
lch23560应助科研通管家采纳,获得50
9秒前
Jason发布了新的文献求助10
9秒前
今后应助科研通管家采纳,获得10
10秒前
Ava应助科研通管家采纳,获得10
10秒前
科研通AI2S应助科研通管家采纳,获得10
10秒前
高分求助中
Shape Determination of Large Sedimental Rock Fragments 2000
Sustainability in Tides Chemistry 2000
Rechtsphilosophie 1000
Bayesian Models of Cognition:Reverse Engineering the Mind 888
A Dissection Guide & Atlas to the Rabbit 600
Very-high-order BVD Schemes Using β-variable THINC Method 568
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3129618
求助须知:如何正确求助?哪些是违规求助? 2780387
关于积分的说明 7747813
捐赠科研通 2435722
什么是DOI,文献DOI怎么找? 1294230
科研通“疑难数据库(出版商)”最低求助积分说明 623601
版权声明 600570