Inductive Magnetic Nanoparticle Sensor Based on Microfluidic Chip Oil Detection Technology

材料科学 磁性纳米粒子 螺线管 磁场 电磁线圈 铁磁性 纳米颗粒 故障检测与隔离 核磁共振 纳米技术 电气工程 工程类 执行机构 物理 凝聚态物理 量子力学
作者
Chenzhao Bai,Hongpeng Zhang,Lin Zeng,Xupeng Zhao,Laihao Ma
出处
期刊:Micromachines [Multidisciplinary Digital Publishing Institute]
卷期号:11 (2): 183-183 被引量:32
标识
DOI:10.3390/mi11020183
摘要

The wear debris in hydraulic oil or lubricating oil has a wealth of equipment operating information, which is an important basis for large mechanical equipment detection and fault diagnosis. Based on traditional inductive oil detection technology, magnetic nanoparticles are exploited in this paper. A new inductive oil detection sensor is designed based on the characteristics of magnetic nanoparticles. The sensor improves detection sensitivity based on distinguishing between ferromagnetic and non-ferromagnetic wear debris. Magnetic nanoparticles increase the internal magnetic field strength of the solenoid coil and the stability of the internal magnetic field of the solenoid coil. During the experiment, the optimal position of the sensor microchannel was first determined, then the effect of the magnetic nanoparticles on the sensor’s detection was confirmed, and finally the concentration ratio of the mixture was determined. The experimental results show that the inductive oil detection sensor made of magnetic nanoparticle material had a higher detection effect, and the signal-to-noise ratio (SNR) of 20–70 μm ferromagnetic particles was increased by 20%–25%. The detection signal-to-noise ratio (SNR) of 80–130 μm non-ferromagnetic particles was increased by 16%–20%. The application of magnetic nanoparticles is a new method in the field of oil detection, which is of great significance for fault diagnosis and the life prediction of hydraulic systems.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
刚刚
NexusExplorer应助科研通管家采纳,获得10
刚刚
刚刚
搞怪白莲发布了新的文献求助10
刚刚
王三歲完成签到,获得积分10
1秒前
所所应助dxk采纳,获得10
1秒前
CodeCraft应助Rylee采纳,获得10
2秒前
小鱼儿发布了新的文献求助10
3秒前
smottom应助journ采纳,获得10
4秒前
4秒前
7秒前
wanci应助KKKK采纳,获得10
7秒前
iNk应助PSC采纳,获得10
8秒前
科研通AI2S应助tz107236采纳,获得10
8秒前
9秒前
顾矜应助苏木采纳,获得10
9秒前
小巧的凌兰完成签到,获得积分10
10秒前
淡淡夕阳发布了新的文献求助10
10秒前
11秒前
ghroth完成签到,获得积分10
15秒前
15秒前
大胆人英完成签到,获得积分10
16秒前
16秒前
田様应助yyauthor采纳,获得10
16秒前
洁净的天思完成签到,获得积分10
17秒前
transition发布了新的文献求助10
17秒前
星辰大海应助Uload采纳,获得10
18秒前
18秒前
18秒前
KKKK完成签到,获得积分10
19秒前
CipherSage应助fanfan采纳,获得10
19秒前
华仔应助标致小翠采纳,获得10
19秒前
19秒前
Littlerain~完成签到,获得积分10
20秒前
隐形曼青应助suiFeng采纳,获得30
20秒前
21秒前
苏木发布了新的文献求助10
22秒前
22秒前
正直千兰发布了新的文献求助10
23秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Technical Brochure TB 814: LPIT applications in HV gas insulated switchgear 1000
Immigrant Incorporation in East Asian Democracies 600
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3966448
求助须知:如何正确求助?哪些是违规求助? 3511917
关于积分的说明 11160753
捐赠科研通 3246652
什么是DOI,文献DOI怎么找? 1793478
邀请新用户注册赠送积分活动 874465
科研通“疑难数据库(出版商)”最低求助积分说明 804403