Deep Supervised Hashing with Similar Hierarchy for Place Recognition

计算机科学 人工智能 深度学习 散列函数 卷积神经网络 水准点(测量) 模式识别(心理学) 特征(语言学) 特征哈希 卷积(计算机科学) 特征提取 机器学习 匹配(统计) 人工神经网络 哈希表 语言学 哲学 统计 计算机安全 大地测量学 数学 双重哈希 地理
作者
Lang Wu,Yihong Wu
标识
DOI:10.1109/iros40897.2019.8968599
摘要

Place recognition as one of the most significant requirements for long-term simultaneous localization and mapping (SLAM) has been developed rapidly in recent years. Also, deep learning is proved to be more capable than traditional methods to extract features under some complex environments. However, in real-world environments, there are many challenging problems such as viewpoint changes and illumination changes. The existing deep learning-based place recognition in extracting feature phases and matching process is both time-consuming. Moreover, features extracted from convolution neural network (CNN) are floating-point type with high dimension. In this paper, we propose deep supervised hashing for place recognition, where we design a similar hierarchy loss function to learn a model. The model can distinguish the similar images more accurately which is well suitable to place recognition. Besides the model can learn high quality hash codes by maximizing the likelihood of triplet labels. Experiments on several benchmark datasets for place recognition show that our approach is robust to viewpoints, illuminations and season changes with high accuracy. Furthermore, the trained model can extract features and match in real time on CPU with less memory consumption.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
思归发布了新的文献求助10
3秒前
3秒前
赘婿应助念姬采纳,获得10
4秒前
xym完成签到,获得积分10
4秒前
5秒前
雪白十三完成签到,获得积分10
5秒前
xym发布了新的文献求助10
6秒前
Orange应助科研通管家采纳,获得10
6秒前
充电宝应助科研通管家采纳,获得10
6秒前
科研通AI2S应助科研通管家采纳,获得10
6秒前
6秒前
yznfly应助科研通管家采纳,获得30
7秒前
yznfly应助科研通管家采纳,获得30
7秒前
Lucas应助科研通管家采纳,获得10
7秒前
yznfly应助科研通管家采纳,获得30
7秒前
mushanes完成签到 ,获得积分10
7秒前
yznfly应助科研通管家采纳,获得30
7秒前
8R60d8应助科研通管家采纳,获得10
7秒前
上官若男应助科研通管家采纳,获得10
7秒前
8R60d8应助科研通管家采纳,获得10
7秒前
华仔应助科研通管家采纳,获得10
7秒前
yznfly应助科研通管家采纳,获得30
7秒前
yznfly应助科研通管家采纳,获得30
8秒前
爆米花应助科研通管家采纳,获得10
8秒前
科研通AI2S应助科研通管家采纳,获得10
8秒前
李健应助科研通管家采纳,获得10
8秒前
8秒前
王永明完成签到,获得积分10
8秒前
一个靓仔发布了新的文献求助10
8秒前
8秒前
温暖的寄云完成签到 ,获得积分10
11秒前
victor发布了新的文献求助10
11秒前
找回自己完成签到,获得积分10
11秒前
11秒前
www发布了新的文献求助10
12秒前
勤奋的从梦完成签到,获得积分10
15秒前
水濑心源发布了新的文献求助10
15秒前
15秒前
18秒前
高分求助中
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
Technical Brochure TB 814: LPIT applications in HV gas insulated switchgear 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3962893
求助须知:如何正确求助?哪些是违规求助? 3508839
关于积分的说明 11143458
捐赠科研通 3241757
什么是DOI,文献DOI怎么找? 1791651
邀请新用户注册赠送积分活动 873058
科研通“疑难数据库(出版商)”最低求助积分说明 803579