Quantifying and leveraging predictive uncertainty for medical image assessment

人工智能 计算机科学 概率逻辑 背景(考古学) 一般化 机器学习 噪音(视频) 自举(财务) 医学影像学 射线照相术 对比度(视觉) 模式识别(心理学) 图像(数学) 数学 放射科 医学 计量经济学 古生物学 数学分析 生物
作者
Florin C. Ghesu,Bogdan Georgescu,Awais Mansoor,Youngjin Yoo,Eli Gibson,R. S. Vishwanath,Abishek Balachandran,James M. Balter,Yue Cao,Ramandeep Singh,Subba R. Digumarthy,Mannudeep K. Kalra,Saša Grbić,Dorin Comaniciu
出处
期刊:Medical Image Analysis [Elsevier]
卷期号:68: 101855-101855 被引量:45
标识
DOI:10.1016/j.media.2020.101855
摘要

The interpretation of medical images is a challenging task, often complicated by the presence of artifacts, occlusions, limited contrast and more. Most notable is the case of chest radiography, where there is a high inter-rater variability in the detection and classification of abnormalities. This is largely due to inconclusive evidence in the data or subjective definitions of disease appearance. An additional example is the classification of anatomical views based on 2D Ultrasound images. Often, the anatomical context captured in a frame is not sufficient to recognize the underlying anatomy. Current machine learning solutions for these problems are typically limited to providing probabilistic predictions, relying on the capacity of underlying models to adapt to limited information and the high degree of label noise. In practice, however, this leads to overconfident systems with poor generalization on unseen data. To account for this, we propose a system that learns not only the probabilistic estimate for classification, but also an explicit uncertainty measure which captures the confidence of the system in the predicted output. We argue that this approach is essential to account for the inherent ambiguity characteristic of medical images from different radiologic exams including computed radiography, ultrasonography and magnetic resonance imaging. In our experiments we demonstrate that sample rejection based on the predicted uncertainty can significantly improve the ROC-AUC for various tasks, e.g., by 8% to 0.91 with an expected rejection rate of under 25% for the classification of different abnormalities in chest radiographs. In addition, we show that using uncertainty-driven bootstrapping to filter the training data, one can achieve a significant increase in robustness and accuracy. Finally, we present a multi-reader study showing that the predictive uncertainty is indicative of reader errors.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
是小小李哇完成签到 ,获得积分10
刚刚
你们才来完成签到,获得积分10
刚刚
淡定的饼干完成签到,获得积分10
1秒前
WWXWWX完成签到,获得积分10
1秒前
舒适念真发布了新的文献求助10
1秒前
bb发布了新的文献求助10
1秒前
eruera完成签到,获得积分10
2秒前
2秒前
2秒前
huang完成签到,获得积分20
3秒前
4秒前
Mike14完成签到,获得积分10
4秒前
执着半烟完成签到,获得积分10
4秒前
psycho完成签到,获得积分10
4秒前
LC完成签到,获得积分10
4秒前
善学以致用应助WWXWWX采纳,获得10
5秒前
爆米花应助WWXWWX采纳,获得10
5秒前
隐形曼青应助WWXWWX采纳,获得10
5秒前
科目三应助WWXWWX采纳,获得10
5秒前
领导范儿应助WWXWWX采纳,获得10
5秒前
汉堡包应助雨醉东风采纳,获得10
5秒前
小悦悦完成签到 ,获得积分10
5秒前
6秒前
负责紊完成签到,获得积分10
6秒前
6秒前
hoy完成签到,获得积分10
7秒前
闪闪的正豪完成签到,获得积分10
7秒前
z_zq完成签到,获得积分10
7秒前
23发布了新的文献求助10
8秒前
迷路迎南完成签到 ,获得积分10
8秒前
9秒前
那一瞬的永恒完成签到,获得积分10
9秒前
Yuzuru_gyq完成签到 ,获得积分10
9秒前
爱笑的曼易完成签到,获得积分10
9秒前
思源应助sky采纳,获得10
9秒前
Robin发布了新的文献求助10
10秒前
chenghua完成签到,获得积分10
10秒前
可爱的函函应助慕冰蝶采纳,获得10
10秒前
CipherSage应助77采纳,获得10
12秒前
追梦大鹏完成签到,获得积分10
12秒前
高分求助中
Evolution 10000
Sustainability in Tides Chemistry 2800
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
Foreign Policy of the French Second Empire: A Bibliography 500
Chen Hansheng: China’s Last Romantic Revolutionary 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3147003
求助须知:如何正确求助?哪些是违规求助? 2798336
关于积分的说明 7827807
捐赠科研通 2454956
什么是DOI,文献DOI怎么找? 1306492
科研通“疑难数据库(出版商)”最低求助积分说明 627808
版权声明 601565