Quantifying and leveraging predictive uncertainty for medical image assessment

人工智能 计算机科学 概率逻辑 背景(考古学) 一般化 机器学习 噪音(视频) 自举(财务) 医学影像学 射线照相术 对比度(视觉) 模式识别(心理学) 图像(数学) 数学 放射科 医学 计量经济学 古生物学 数学分析 生物
作者
Florin C. Ghesu,Bogdan Georgescu,Awais Mansoor,Youngjin Yoo,Eli Gibson,R. S. Vishwanath,Abishek Balachandran,James M. Balter,Yue Cao,Ramandeep Singh,Subba R. Digumarthy,Mannudeep K. Kalra,Saša Grbić,Dorin Comaniciu
出处
期刊:Medical Image Analysis [Elsevier]
卷期号:68: 101855-101855 被引量:45
标识
DOI:10.1016/j.media.2020.101855
摘要

The interpretation of medical images is a challenging task, often complicated by the presence of artifacts, occlusions, limited contrast and more. Most notable is the case of chest radiography, where there is a high inter-rater variability in the detection and classification of abnormalities. This is largely due to inconclusive evidence in the data or subjective definitions of disease appearance. An additional example is the classification of anatomical views based on 2D Ultrasound images. Often, the anatomical context captured in a frame is not sufficient to recognize the underlying anatomy. Current machine learning solutions for these problems are typically limited to providing probabilistic predictions, relying on the capacity of underlying models to adapt to limited information and the high degree of label noise. In practice, however, this leads to overconfident systems with poor generalization on unseen data. To account for this, we propose a system that learns not only the probabilistic estimate for classification, but also an explicit uncertainty measure which captures the confidence of the system in the predicted output. We argue that this approach is essential to account for the inherent ambiguity characteristic of medical images from different radiologic exams including computed radiography, ultrasonography and magnetic resonance imaging. In our experiments we demonstrate that sample rejection based on the predicted uncertainty can significantly improve the ROC-AUC for various tasks, e.g., by 8% to 0.91 with an expected rejection rate of under 25% for the classification of different abnormalities in chest radiographs. In addition, we show that using uncertainty-driven bootstrapping to filter the training data, one can achieve a significant increase in robustness and accuracy. Finally, we present a multi-reader study showing that the predictive uncertainty is indicative of reader errors.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
2秒前
CodeCraft应助Xinwen0322采纳,获得30
2秒前
3秒前
future完成签到 ,获得积分10
3秒前
英勇大门完成签到,获得积分10
4秒前
5秒前
嗯哼发布了新的文献求助10
6秒前
爱吃铁板牛肉的鱿鱼须完成签到,获得积分10
6秒前
7秒前
8秒前
9秒前
yyauthor完成签到,获得积分10
10秒前
鲤鱼砖头关注了科研通微信公众号
10秒前
又又发布了新的文献求助10
10秒前
xliiii发布了新的文献求助10
13秒前
13秒前
13秒前
13秒前
13秒前
ShangNiNE完成签到 ,获得积分10
13秒前
YXIAN完成签到,获得积分10
14秒前
西厢张生发布了新的文献求助10
14秒前
科研通AI6应助liang2508采纳,获得10
14秒前
痴痴的噜完成签到,获得积分10
15秒前
15秒前
StudyLiao完成签到,获得积分10
15秒前
15秒前
17秒前
17秒前
upupup发布了新的文献求助10
18秒前
19秒前
GangWu完成签到,获得积分20
20秒前
迟未瑾发布了新的文献求助10
20秒前
Xinwen0322发布了新的文献求助30
20秒前
可爱的函函应助江夏采纳,获得10
21秒前
21秒前
21秒前
查重率咋一百完成签到,获得积分10
21秒前
天上人间完成签到,获得积分10
22秒前
高分求助中
晶体学对称群—如何读懂和应用国际晶体学表 1500
Constitutional and Administrative Law 1000
Microbially Influenced Corrosion of Materials 500
Die Fliegen der Palaearktischen Region. Familie 64 g: Larvaevorinae (Tachininae). 1975 500
The Experimental Biology of Bryophytes 500
Numerical controlled progressive forming as dieless forming 400
Rural Geographies People, Place and the Countryside 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5382258
求助须知:如何正确求助?哪些是违规求助? 4505455
关于积分的说明 14021836
捐赠科研通 4414879
什么是DOI,文献DOI怎么找? 2425203
邀请新用户注册赠送积分活动 1418008
关于科研通互助平台的介绍 1395964