Quantifying and leveraging predictive uncertainty for medical image assessment

人工智能 计算机科学 概率逻辑 背景(考古学) 一般化 机器学习 噪音(视频) 自举(财务) 医学影像学 射线照相术 对比度(视觉) 模式识别(心理学) 图像(数学) 数学 放射科 医学 计量经济学 数学分析 古生物学 生物
作者
Florin C. Ghesu,Bogdan Georgescu,Awais Mansoor,Youngjin Yoo,Eli Gibson,R. S. Vishwanath,Abishek Balachandran,James M. Balter,Yue Cao,Ramandeep Singh,Subba R. Digumarthy,Mannudeep K. Kalra,Saša Grbić,Dorin Comaniciu
出处
期刊:Medical Image Analysis [Elsevier BV]
卷期号:68: 101855-101855 被引量:45
标识
DOI:10.1016/j.media.2020.101855
摘要

The interpretation of medical images is a challenging task, often complicated by the presence of artifacts, occlusions, limited contrast and more. Most notable is the case of chest radiography, where there is a high inter-rater variability in the detection and classification of abnormalities. This is largely due to inconclusive evidence in the data or subjective definitions of disease appearance. An additional example is the classification of anatomical views based on 2D Ultrasound images. Often, the anatomical context captured in a frame is not sufficient to recognize the underlying anatomy. Current machine learning solutions for these problems are typically limited to providing probabilistic predictions, relying on the capacity of underlying models to adapt to limited information and the high degree of label noise. In practice, however, this leads to overconfident systems with poor generalization on unseen data. To account for this, we propose a system that learns not only the probabilistic estimate for classification, but also an explicit uncertainty measure which captures the confidence of the system in the predicted output. We argue that this approach is essential to account for the inherent ambiguity characteristic of medical images from different radiologic exams including computed radiography, ultrasonography and magnetic resonance imaging. In our experiments we demonstrate that sample rejection based on the predicted uncertainty can significantly improve the ROC-AUC for various tasks, e.g., by 8% to 0.91 with an expected rejection rate of under 25% for the classification of different abnormalities in chest radiographs. In addition, we show that using uncertainty-driven bootstrapping to filter the training data, one can achieve a significant increase in robustness and accuracy. Finally, we present a multi-reader study showing that the predictive uncertainty is indicative of reader errors.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
小奋青完成签到 ,获得积分10
1秒前
量子星尘发布了新的文献求助10
2秒前
baishuo完成签到,获得积分10
5秒前
杨美琪发布了新的文献求助10
6秒前
充电宝应助向北游采纳,获得10
6秒前
xiaozou55完成签到 ,获得积分10
7秒前
大力完成签到 ,获得积分10
9秒前
11秒前
zhangyuting完成签到 ,获得积分10
12秒前
kid1412完成签到 ,获得积分10
12秒前
xn201120完成签到 ,获得积分10
13秒前
量子星尘发布了新的文献求助10
15秒前
小新小新完成签到 ,获得积分10
15秒前
Dromaeotroodon完成签到,获得积分10
16秒前
江城闲鹤发布了新的文献求助10
16秒前
Singularity应助科研通管家采纳,获得10
20秒前
Singularity应助科研通管家采纳,获得10
20秒前
科研通AI5应助科研通管家采纳,获得10
20秒前
Singularity应助科研通管家采纳,获得10
20秒前
科研通AI5应助科研通管家采纳,获得10
20秒前
Singularity应助科研通管家采纳,获得10
20秒前
Singularity应助科研通管家采纳,获得10
20秒前
leaolf应助科研通管家采纳,获得150
20秒前
20秒前
20秒前
21秒前
Tina完成签到 ,获得积分10
24秒前
27秒前
tryagain发布了新的文献求助10
30秒前
争气完成签到 ,获得积分10
30秒前
WZH完成签到,获得积分10
32秒前
李爱国应助江城闲鹤采纳,获得10
35秒前
材1完成签到 ,获得积分10
35秒前
FashionBoy应助up采纳,获得10
36秒前
量子星尘发布了新的文献求助10
36秒前
paper完成签到,获得积分10
37秒前
情怀应助wubin69采纳,获得10
40秒前
linnnn完成签到,获得积分20
41秒前
tryagain完成签到,获得积分10
46秒前
yoyofun完成签到,获得积分10
46秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Cowries - A Guide to the Gastropod Family Cypraeidae 1200
Handbook of Milkfat Fractionation Technology and Application, by Kerry E. Kaylegian and Robert C. Lindsay, AOCS Press, 1995 1000
Nach dem Geist? 500
The Affinity Designer Manual - Version 2: A Step-by-Step Beginner's Guide 500
Affinity Designer Essentials: A Complete Guide to Vector Art: Your Ultimate Handbook for High-Quality Vector Graphics 500
Optimisation de cristallisation en solution de deux composés organiques en vue de leur purification 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5044603
求助须知:如何正确求助?哪些是违规求助? 4274186
关于积分的说明 13323344
捐赠科研通 4087837
什么是DOI,文献DOI怎么找? 2236545
邀请新用户注册赠送积分活动 1243935
关于科研通互助平台的介绍 1171966