亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Quantifying and leveraging predictive uncertainty for medical image assessment

人工智能 计算机科学 概率逻辑 背景(考古学) 一般化 机器学习 噪音(视频) 自举(财务) 医学影像学 射线照相术 对比度(视觉) 模式识别(心理学) 图像(数学) 数学 放射科 医学 计量经济学 古生物学 数学分析 生物
作者
Florin C. Ghesu,Bogdan Georgescu,Awais Mansoor,Youngjin Yoo,Eli Gibson,R. S. Vishwanath,Abishek Balachandran,James M. Balter,Yue Cao,Ramandeep Singh,Subba R. Digumarthy,Mannudeep K. Kalra,Saša Grbić,Dorin Comaniciu
出处
期刊:Medical Image Analysis [Elsevier BV]
卷期号:68: 101855-101855 被引量:45
标识
DOI:10.1016/j.media.2020.101855
摘要

The interpretation of medical images is a challenging task, often complicated by the presence of artifacts, occlusions, limited contrast and more. Most notable is the case of chest radiography, where there is a high inter-rater variability in the detection and classification of abnormalities. This is largely due to inconclusive evidence in the data or subjective definitions of disease appearance. An additional example is the classification of anatomical views based on 2D Ultrasound images. Often, the anatomical context captured in a frame is not sufficient to recognize the underlying anatomy. Current machine learning solutions for these problems are typically limited to providing probabilistic predictions, relying on the capacity of underlying models to adapt to limited information and the high degree of label noise. In practice, however, this leads to overconfident systems with poor generalization on unseen data. To account for this, we propose a system that learns not only the probabilistic estimate for classification, but also an explicit uncertainty measure which captures the confidence of the system in the predicted output. We argue that this approach is essential to account for the inherent ambiguity characteristic of medical images from different radiologic exams including computed radiography, ultrasonography and magnetic resonance imaging. In our experiments we demonstrate that sample rejection based on the predicted uncertainty can significantly improve the ROC-AUC for various tasks, e.g., by 8% to 0.91 with an expected rejection rate of under 25% for the classification of different abnormalities in chest radiographs. In addition, we show that using uncertainty-driven bootstrapping to filter the training data, one can achieve a significant increase in robustness and accuracy. Finally, we present a multi-reader study showing that the predictive uncertainty is indicative of reader errors.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
皮崇知发布了新的文献求助10
7秒前
美满雁芙完成签到 ,获得积分10
11秒前
彪壮的凡波完成签到,获得积分10
13秒前
哦豁完成签到 ,获得积分10
13秒前
比巴卜完成签到 ,获得积分10
17秒前
19秒前
26秒前
明亮剑完成签到 ,获得积分10
27秒前
橙子味的邱憨憨完成签到 ,获得积分10
35秒前
eye应助hp571采纳,获得10
36秒前
jyy应助调皮的浩天采纳,获得10
36秒前
36秒前
233完成签到 ,获得积分10
57秒前
ll完成签到 ,获得积分10
58秒前
ST发布了新的文献求助10
1分钟前
Mine完成签到,获得积分10
1分钟前
在水一方应助Mine采纳,获得10
1分钟前
Hello应助leanne采纳,获得10
1分钟前
谷千千完成签到,获得积分20
1分钟前
1分钟前
1分钟前
1分钟前
搜集达人应助俏皮绿蓉采纳,获得10
1分钟前
2分钟前
leanne发布了新的文献求助10
2分钟前
灰色白面鸮完成签到,获得积分10
2分钟前
2分钟前
东郭凝蝶完成签到 ,获得积分10
2分钟前
2分钟前
勇敢牛牛完成签到 ,获得积分10
2分钟前
2分钟前
DoctorG发布了新的文献求助10
2分钟前
2分钟前
我是老大应助DoctorG采纳,获得10
2分钟前
yaling完成签到,获得积分10
2分钟前
2分钟前
白切鸡大王完成签到,获得积分10
2分钟前
2分钟前
向莉完成签到 ,获得积分10
2分钟前
高分求助中
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Technical Brochure TB 814: LPIT applications in HV gas insulated switchgear 1000
Immigrant Incorporation in East Asian Democracies 500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3965604
求助须知:如何正确求助?哪些是违规求助? 3510843
关于积分的说明 11155405
捐赠科研通 3245345
什么是DOI,文献DOI怎么找? 1792840
邀请新用户注册赠送积分活动 874118
科研通“疑难数据库(出版商)”最低求助积分说明 804188