Robust communication strategy for federated learning by incorporating self-attention

计算机科学 稳健性(进化) 联合学习 数据建模 分布式计算 延迟(音频) 数据传输 过程(计算) 服务器 原始数据 人工智能 机器学习 计算机网络 数据库 操作系统 基因 化学 程序设计语言 电信 生物化学
作者
Yawen Xu,Xiaojun Li,Zeyu Yang,Hengjie J. Song
标识
DOI:10.1117/12.2581491
摘要

Federated learning is an emerging machine learning setting, which can train a shared model on large amounts of decentralized data while protecting data privacy. However, the communication cost of federated learning is heavy, especially for mobile devices with higher latency and lower throughput. Although several algorithms have been proposed to reduce the communication cost, they are extremely sensitive to data distribution, even inapplicable to the real client Non-IID data. In this paper, we propose an effective communication strategy for federated learning called FedSAA, which increases the testing performance on Non-IID data by introducing self- attention mechanism. Two major innovations of our paper are presented here. Firstly, we utilize self-attention mechanism to optimize both the server-to-client and the client-to-client parameter divergence during the model aggregation process so as to improve the model robustness for Non-IID data. Secondly, we adopt the sign compression operator to help data transmission between nodes. The experimental results demonstrate that the model accuracy of our communication-efficient strategy for federated learning with Non-IID data is superior to other communication-efficient algorithms.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
123完成签到,获得积分20
3秒前
王利发布了新的文献求助150
3秒前
xiaohan发布了新的文献求助10
3秒前
深情安青应助粗犷的书萱采纳,获得30
3秒前
但是完成签到,获得积分10
6秒前
英俊的铭应助冰凌心恋采纳,获得10
6秒前
13秒前
14秒前
16秒前
快乐滑板应助科研通管家采纳,获得10
19秒前
Leif应助科研通管家采纳,获得10
19秒前
一一应助科研通管家采纳,获得10
19秒前
丘比特应助科研通管家采纳,获得10
19秒前
科研通AI2S应助科研通管家采纳,获得10
19秒前
思源应助科研通管家采纳,获得10
19秒前
香蕉觅云应助科研通管家采纳,获得10
19秒前
19秒前
爆米花应助科研通管家采纳,获得10
19秒前
充电宝应助科研通管家采纳,获得10
19秒前
xie完成签到,获得积分10
21秒前
21秒前
21秒前
深情安青应助粥粥采纳,获得10
21秒前
wangwang完成签到 ,获得积分10
21秒前
ding应助星星采纳,获得10
24秒前
24秒前
有缘发布了新的文献求助50
26秒前
tuanheqi应助yxl_puppy采纳,获得50
27秒前
传奇3应助小白鼠hai采纳,获得10
28秒前
28秒前
小蘑菇应助骨化醇采纳,获得10
29秒前
带头大哥应助hnututu采纳,获得200
30秒前
带头大哥应助hnututu采纳,获得200
30秒前
带头大哥应助hnututu采纳,获得200
30秒前
31秒前
可爱的函函应助regina采纳,获得10
32秒前
留胡子的山灵完成签到,获得积分10
33秒前
kx完成签到 ,获得积分10
35秒前
37秒前
高分求助中
Solution Manual for Strategic Compensation A Human Resource Management Approach 1200
Natural History of Mantodea 螳螂的自然史 1000
Glucuronolactone Market Outlook Report: Industry Size, Competition, Trends and Growth Opportunities by Region, YoY Forecasts from 2024 to 2031 800
A Photographic Guide to Mantis of China 常见螳螂野外识别手册 800
Zeitschrift für Orient-Archäologie 500
Autoregulatory progressive resistance exercise: linear versus a velocity-based flexible model 500
Synchrotron X-Ray Methods in Clay Science 300
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3340751
求助须知:如何正确求助?哪些是违规求助? 2968590
关于积分的说明 8634363
捐赠科研通 2648111
什么是DOI,文献DOI怎么找? 1450028
科研通“疑难数据库(出版商)”最低求助积分说明 671649
邀请新用户注册赠送积分活动 660693