Higher-order Markov models for metagenomic sequence classification

基因组 隐马尔可夫模型 计算机科学 机器学习 马尔可夫模型 软件 马尔可夫链 数据挖掘 分类器(UML) 背景(考古学) 计算生物学 分类等级 人工智能 生物 遗传学 基因 古生物学 植物 分类单元 程序设计语言
作者
David J. Burks,Rajeev K. Azad
出处
期刊:Bioinformatics [Oxford University Press]
卷期号:36 (14): 4130-4136 被引量:8
标识
DOI:10.1093/bioinformatics/btaa562
摘要

Abstract Motivation Alignment-free, stochastic models derived from k-mer distributions representing reference genome sequences have a rich history in the classification of DNA sequences. In particular, the variants of Markov models have previously been used extensively. Higher-order Markov models have been used with caution, perhaps sparingly, primarily because of the lack of enough training data and computational power. Advances in sequencing technology and computation have enabled exploitation of the predictive power of higher-order models. We, therefore, revisited higher-order Markov models and assessed their performance in classifying metagenomic sequences. Results Comparative assessment of higher-order models (HOMs, 9th order or higher) with interpolated Markov model, interpolated context model and lower-order models (8th order or lower) was performed on metagenomic datasets constructed using sequenced prokaryotic genomes. Our results show that HOMs outperform other models in classifying metagenomic fragments as short as 100 nt at all taxonomic ranks, and at lower ranks when the fragment size was increased to 250 nt. HOMs were also found to be significantly more accurate than local alignment which is widely relied upon for taxonomic classification of metagenomic sequences. A novel software implementation written in C++ performs classification faster than the existing Markovian metagenomic classifiers and can therefore be used as a standalone classifier or in conjunction with existing taxonomic classifiers for more robust classification of metagenomic sequences. Availability and implementation The software has been made available at https://github.com/djburks/SMM. Contact Rajeev.Azad@unt.edu Supplementary information Supplementary data are available at Bioinformatics online.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
刚刚
暖冬22发布了新的文献求助10
刚刚
1秒前
lcls完成签到,获得积分10
1秒前
1秒前
练大金完成签到,获得积分10
2秒前
肉酱完成签到 ,获得积分10
3秒前
3秒前
刘柳完成签到 ,获得积分10
4秒前
领导范儿应助Re采纳,获得10
4秒前
别吃我的鱼完成签到,获得积分10
4秒前
astray完成签到,获得积分10
5秒前
毛毛发布了新的文献求助10
5秒前
华仔应助lj采纳,获得10
6秒前
wmx完成签到,获得积分20
6秒前
6秒前
aniu发布了新的文献求助10
6秒前
孙福禄应助暖冬22采纳,获得10
7秒前
7秒前
陈静123发布了新的文献求助10
7秒前
ynchendt完成签到,获得积分10
8秒前
伶俐的安波完成签到,获得积分10
8秒前
停婷发布了新的文献求助10
8秒前
leisure发布了新的文献求助10
8秒前
完美世界应助HGQ采纳,获得10
8秒前
聪明的三问完成签到,获得积分10
9秒前
小young完成签到 ,获得积分10
10秒前
霸气乘风发布了新的文献求助20
11秒前
HenryXiao发布了新的文献求助10
12秒前
科研通AI2S应助wmx采纳,获得10
12秒前
12秒前
yaoyulin完成签到,获得积分20
13秒前
xyx945应助苹果采纳,获得10
13秒前
羞涩的怀蝶完成签到,获得积分10
14秒前
舍瓦完成签到,获得积分10
14秒前
14秒前
Hello应助书虫采纳,获得10
15秒前
15秒前
FashionBoy应助leisure采纳,获得10
16秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Handbook of Marine Craft Hydrodynamics and Motion Control, 2nd Edition 500
‘Unruly’ Children: Historical Fieldnotes and Learning Morality in a Taiwan Village (New Departures in Anthropology) 400
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 350
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3987223
求助须知:如何正确求助?哪些是违规求助? 3529513
关于积分的说明 11245651
捐赠科研通 3268108
什么是DOI,文献DOI怎么找? 1804027
邀请新用户注册赠送积分活动 881303
科研通“疑难数据库(出版商)”最低求助积分说明 808650