Higher-order Markov models for metagenomic sequence classification

基因组 隐马尔可夫模型 计算机科学 机器学习 马尔可夫模型 软件 马尔可夫链 数据挖掘 分类器(UML) 背景(考古学) 计算生物学 分类等级 人工智能 生物 遗传学 基因 分类单元 古生物学 程序设计语言 植物
作者
David J. Burks,Rajeev K. Azad
出处
期刊:Bioinformatics [Oxford University Press]
卷期号:36 (14): 4130-4136 被引量:8
标识
DOI:10.1093/bioinformatics/btaa562
摘要

Abstract Motivation Alignment-free, stochastic models derived from k-mer distributions representing reference genome sequences have a rich history in the classification of DNA sequences. In particular, the variants of Markov models have previously been used extensively. Higher-order Markov models have been used with caution, perhaps sparingly, primarily because of the lack of enough training data and computational power. Advances in sequencing technology and computation have enabled exploitation of the predictive power of higher-order models. We, therefore, revisited higher-order Markov models and assessed their performance in classifying metagenomic sequences. Results Comparative assessment of higher-order models (HOMs, 9th order or higher) with interpolated Markov model, interpolated context model and lower-order models (8th order or lower) was performed on metagenomic datasets constructed using sequenced prokaryotic genomes. Our results show that HOMs outperform other models in classifying metagenomic fragments as short as 100 nt at all taxonomic ranks, and at lower ranks when the fragment size was increased to 250 nt. HOMs were also found to be significantly more accurate than local alignment which is widely relied upon for taxonomic classification of metagenomic sequences. A novel software implementation written in C++ performs classification faster than the existing Markovian metagenomic classifiers and can therefore be used as a standalone classifier or in conjunction with existing taxonomic classifiers for more robust classification of metagenomic sequences. Availability and implementation The software has been made available at https://github.com/djburks/SMM. Contact Rajeev.Azad@unt.edu Supplementary information Supplementary data are available at Bioinformatics online.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
量子星尘发布了新的文献求助30
2秒前
2秒前
hszg2333完成签到 ,获得积分10
3秒前
zz发布了新的文献求助10
3秒前
3秒前
杨德帅发布了新的文献求助10
3秒前
西瓜完成签到,获得积分10
4秒前
123发布了新的文献求助10
4秒前
天天快乐应助Lignin采纳,获得10
5秒前
香蕉觅云应助R18686226306采纳,获得10
6秒前
spc68应助谨慎的寒松采纳,获得10
6秒前
spc68应助谨慎的寒松采纳,获得10
6秒前
6秒前
shenjintai发布了新的文献求助10
7秒前
量子星尘发布了新的文献求助10
8秒前
9秒前
9秒前
星辰坠于海应助lidd采纳,获得20
10秒前
lmlx发布了新的文献求助10
11秒前
QQ发布了新的文献求助10
11秒前
11秒前
聪慧的从丹完成签到 ,获得积分10
12秒前
13秒前
13秒前
13秒前
14秒前
15秒前
Lekai发布了新的文献求助10
15秒前
spc68应助谨慎的寒松采纳,获得10
16秒前
spc68应助谨慎的寒松采纳,获得10
16秒前
spc68应助谨慎的寒松采纳,获得10
17秒前
Maestro_S应助aub采纳,获得10
17秒前
19秒前
gua完成签到,获得积分20
20秒前
20秒前
李煜琛完成签到 ,获得积分10
20秒前
21秒前
慕青应助落寞自中采纳,获得10
21秒前
酷波er应助李鸣笛采纳,获得10
21秒前
诚心芷巧完成签到,获得积分10
21秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
从k到英国情人 1500
Ägyptische Geschichte der 21.–30. Dynastie 1100
„Semitische Wissenschaften“? 1100
Real World Research, 5th Edition 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5736993
求助须知:如何正确求助?哪些是违规求助? 5369908
关于积分的说明 15334507
捐赠科研通 4880710
什么是DOI,文献DOI怎么找? 2622987
邀请新用户注册赠送积分活动 1571843
关于科研通互助平台的介绍 1528696