Higher-order Markov models for metagenomic sequence classification

基因组 隐马尔可夫模型 计算机科学 机器学习 马尔可夫模型 软件 马尔可夫链 数据挖掘 分类器(UML) 背景(考古学) 计算生物学 分类等级 人工智能 生物 遗传学 基因 分类单元 古生物学 程序设计语言 植物
作者
David J. Burks,Rajeev K. Azad
出处
期刊:Bioinformatics [Oxford University Press]
卷期号:36 (14): 4130-4136 被引量:8
标识
DOI:10.1093/bioinformatics/btaa562
摘要

Abstract Motivation Alignment-free, stochastic models derived from k-mer distributions representing reference genome sequences have a rich history in the classification of DNA sequences. In particular, the variants of Markov models have previously been used extensively. Higher-order Markov models have been used with caution, perhaps sparingly, primarily because of the lack of enough training data and computational power. Advances in sequencing technology and computation have enabled exploitation of the predictive power of higher-order models. We, therefore, revisited higher-order Markov models and assessed their performance in classifying metagenomic sequences. Results Comparative assessment of higher-order models (HOMs, 9th order or higher) with interpolated Markov model, interpolated context model and lower-order models (8th order or lower) was performed on metagenomic datasets constructed using sequenced prokaryotic genomes. Our results show that HOMs outperform other models in classifying metagenomic fragments as short as 100 nt at all taxonomic ranks, and at lower ranks when the fragment size was increased to 250 nt. HOMs were also found to be significantly more accurate than local alignment which is widely relied upon for taxonomic classification of metagenomic sequences. A novel software implementation written in C++ performs classification faster than the existing Markovian metagenomic classifiers and can therefore be used as a standalone classifier or in conjunction with existing taxonomic classifiers for more robust classification of metagenomic sequences. Availability and implementation The software has been made available at https://github.com/djburks/SMM. Contact Rajeev.Azad@unt.edu Supplementary information Supplementary data are available at Bioinformatics online.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
烟花应助分手吧亚索采纳,获得10
刚刚
jieruwei发布了新的文献求助10
1秒前
结实的芷荷完成签到 ,获得积分10
1秒前
1秒前
moonlight发布了新的文献求助30
2秒前
XiaoLi完成签到,获得积分10
2秒前
言十发布了新的文献求助10
3秒前
adds发布了新的文献求助10
3秒前
hhh完成签到,获得积分10
3秒前
徐冰淇完成签到,获得积分10
4秒前
严yee发布了新的文献求助30
4秒前
5秒前
Lily完成签到,获得积分10
6秒前
抬起头我就看到了光完成签到 ,获得积分10
6秒前
量子星尘发布了新的文献求助10
7秒前
多情的捕发布了新的文献求助10
8秒前
小马甲应助行者采纳,获得10
8秒前
言十完成签到,获得积分10
9秒前
9秒前
Eclipse完成签到,获得积分10
10秒前
星辰大海应助会飞的猪qq采纳,获得10
10秒前
孤独宛凝发布了新的文献求助10
10秒前
Lucas应助112233采纳,获得10
10秒前
小二郎应助追风采纳,获得10
10秒前
活力论文发布了新的文献求助10
11秒前
MchemG应助科研废人采纳,获得10
12秒前
13秒前
田様应助祁丶采纳,获得50
13秒前
柠栀应助DrJiang采纳,获得10
14秒前
Eclipse发布了新的文献求助10
14秒前
14秒前
14秒前
kk留下了新的社区评论
14秒前
烟花应助Dylan采纳,获得10
14秒前
时间的过客完成签到,获得积分10
14秒前
15秒前
16秒前
跑快点发布了新的文献求助10
16秒前
吴翔发布了新的文献求助10
17秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Agriculture and Food Systems Third Edition 2000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 临床微生物学程序手册,多卷,第5版 2000
人脑智能与人工智能 1000
King Tyrant 720
Silicon in Organic, Organometallic, and Polymer Chemistry 500
Principles of Plasma Discharges and Materials Processing, 3rd Edition 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5601274
求助须知:如何正确求助?哪些是违规求助? 4686785
关于积分的说明 14846051
捐赠科研通 4680352
什么是DOI,文献DOI怎么找? 2539276
邀请新用户注册赠送积分活动 1506151
关于科研通互助平台的介绍 1471283