stLearn: integrating spatial location, tissue morphology and gene expression to find cell types, cell-cell interactions and spatial trajectories within undissociated tissues

聚类分析 电池类型 成对比较 背景(考古学) 计算生物学 细胞 空间生态学 生物 平滑的 距离变换 层次聚类 计算机科学 模式识别(心理学) 人工智能 遗传学 图像(数学) 计算机视觉 古生物学 生态学
作者
Duy Pham,Xiao Tan,Jun Xu,Laura F. Grice,Pui Yeng Lam,Arti M. Raghubar,Jana Vukovic,Marc J. Ruitenberg,Quan Nguyen
标识
DOI:10.1101/2020.05.31.125658
摘要

ABSTRACT Spatial Transcriptomics is an emerging technology that adds spatial dimensionality and tissue morphology to the genome-wide transcriptional profile of cells in an undissociated tissue. Integrating these three types of data creates a vast potential for deciphering novel biology of cell types in their native morphological context. Here we developed innovative integrative analysis approaches to utilise all three data types to first find cell types, then reconstruct cell type evolution within a tissue, and search for tissue regions with high cell-to-cell interactions. First, for normalisation of gene expression, we compute a distance measure using morphological similarity and neighbourhood smoothing. The normalised data is then used to find clusters that represent transcriptional profiles of specific cell types and cellular phenotypes. Clusters are further sub-clustered if cells are spatially separated. Analysing anatomical regions in three mouse brain sections and 12 human brain datasets, we found the spatial clustering method more accurate and sensitive than other methods. Second, we introduce a method to calculate transcriptional states by pseudo-space-time (PST) distance. PST distance is a function of physical distance (spatial distance) and gene expression distance (pseudotime distance) to estimate the pairwise similarity between transcriptional profiles among cells within a tissue. We reconstruct spatial transition gradients within and between cell types that are connected locally within a cluster, or globally between clusters, by a directed minimum spanning tree optimisation approach for PST distance. The PST algorithm could model spatial transition from non-invasive to invasive cells within a breast cancer dataset. Third, we utilise spatial information and gene expression profiles to identify locations in the tissue where there is both high ligand-receptor interaction activity and diverse cell type co-localisation. These tissue locations are predicted to be hotspots where cell-cell interactions are more likely to occur. We detected tissue regions and ligand-receptor pairs significantly enriched compared to background distribution across a breast cancer tissue. Together, these three algorithms, implemented in a comprehensive Python software stLearn, allow for the elucidation of biological processes within healthy and diseased tissues.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
小子弹发布了新的文献求助10
刚刚
萌妹完成签到,获得积分10
刚刚
刚刚
AAAAA完成签到 ,获得积分10
2秒前
2秒前
科目三应助菜菜采纳,获得10
2秒前
江峰发布了新的文献求助10
3秒前
LAMAMAX发布了新的文献求助20
3秒前
McGrady应助迷人秋烟采纳,获得1000
3秒前
斯文败类应助高挑的宛海采纳,获得10
4秒前
迷失沉寂完成签到,获得积分20
4秒前
不想干活应助没有昵称采纳,获得30
4秒前
香蕉招牌完成签到,获得积分10
5秒前
哼哼发布了新的文献求助20
5秒前
果果完成签到,获得积分10
5秒前
杏花饼完成签到,获得积分10
5秒前
瘦瘦慕凝发布了新的文献求助10
5秒前
飞快的从丹完成签到,获得积分10
5秒前
ww发布了新的文献求助10
5秒前
hbu123完成签到,获得积分10
5秒前
ccalvintan完成签到,获得积分10
7秒前
zmnzmnzmn发布了新的文献求助10
7秒前
开心凌柏发布了新的文献求助10
8秒前
量子星尘发布了新的文献求助10
8秒前
8秒前
脑洞疼应助王三采纳,获得10
9秒前
9秒前
10秒前
10秒前
10秒前
xjcy应助独角兽采纳,获得10
11秒前
xjcy应助独角兽采纳,获得10
11秒前
11秒前
小酒窝周周完成签到 ,获得积分10
12秒前
iveuplife完成签到,获得积分20
12秒前
Yange完成签到,获得积分10
13秒前
雪飞完成签到,获得积分10
13秒前
FashionBoy应助levy采纳,获得10
13秒前
文静的刺猬完成签到,获得积分10
14秒前
高挑的宛海完成签到,获得积分20
14秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Manipulating the Mouse Embryo: A Laboratory Manual, Fourth Edition 1000
计划经济时代的工厂管理与工人状况(1949-1966)——以郑州市国营工厂为例 500
Comparison of spinal anesthesia and general anesthesia in total hip and total knee arthroplasty: a meta-analysis and systematic review 500
INQUIRY-BASED PEDAGOGY TO SUPPORT STEM LEARNING AND 21ST CENTURY SKILLS: PREPARING NEW TEACHERS TO IMPLEMENT PROJECT AND PROBLEM-BASED LEARNING 500
Modern Britain, 1750 to the Present (第2版) 300
Writing to the Rhythm of Labor Cultural Politics of the Chinese Revolution, 1942–1976 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4585432
求助须知:如何正确求助?哪些是违规求助? 4002122
关于积分的说明 12389406
捐赠科研通 3678232
什么是DOI,文献DOI怎么找? 2027162
邀请新用户注册赠送积分活动 1060707
科研通“疑难数据库(出版商)”最低求助积分说明 947227