亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

stLearn: integrating spatial location, tissue morphology and gene expression to find cell types, cell-cell interactions and spatial trajectories within undissociated tissues

聚类分析 电池类型 成对比较 背景(考古学) 计算生物学 细胞 空间生态学 生物 平滑的 距离变换 层次聚类 计算机科学 模式识别(心理学) 人工智能 遗传学 图像(数学) 计算机视觉 古生物学 生态学
作者
Duy Pham,Xiao Tan,Jun Xu,Laura F. Grice,Pui Yeng Lam,Arti M. Raghubar,Jana Vukovic,Marc J. Ruitenberg,Quan Nguyen
标识
DOI:10.1101/2020.05.31.125658
摘要

ABSTRACT Spatial Transcriptomics is an emerging technology that adds spatial dimensionality and tissue morphology to the genome-wide transcriptional profile of cells in an undissociated tissue. Integrating these three types of data creates a vast potential for deciphering novel biology of cell types in their native morphological context. Here we developed innovative integrative analysis approaches to utilise all three data types to first find cell types, then reconstruct cell type evolution within a tissue, and search for tissue regions with high cell-to-cell interactions. First, for normalisation of gene expression, we compute a distance measure using morphological similarity and neighbourhood smoothing. The normalised data is then used to find clusters that represent transcriptional profiles of specific cell types and cellular phenotypes. Clusters are further sub-clustered if cells are spatially separated. Analysing anatomical regions in three mouse brain sections and 12 human brain datasets, we found the spatial clustering method more accurate and sensitive than other methods. Second, we introduce a method to calculate transcriptional states by pseudo-space-time (PST) distance. PST distance is a function of physical distance (spatial distance) and gene expression distance (pseudotime distance) to estimate the pairwise similarity between transcriptional profiles among cells within a tissue. We reconstruct spatial transition gradients within and between cell types that are connected locally within a cluster, or globally between clusters, by a directed minimum spanning tree optimisation approach for PST distance. The PST algorithm could model spatial transition from non-invasive to invasive cells within a breast cancer dataset. Third, we utilise spatial information and gene expression profiles to identify locations in the tissue where there is both high ligand-receptor interaction activity and diverse cell type co-localisation. These tissue locations are predicted to be hotspots where cell-cell interactions are more likely to occur. We detected tissue regions and ligand-receptor pairs significantly enriched compared to background distribution across a breast cancer tissue. Together, these three algorithms, implemented in a comprehensive Python software stLearn, allow for the elucidation of biological processes within healthy and diseased tissues.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
MchemG完成签到,获得积分0
24秒前
Marshall完成签到 ,获得积分10
45秒前
46秒前
52秒前
xiaozou55完成签到 ,获得积分10
54秒前
大模型应助乖乖给姐躺好采纳,获得10
1分钟前
1分钟前
Wdwpp完成签到 ,获得积分10
1分钟前
量子星尘发布了新的文献求助30
1分钟前
ataybabdallah完成签到,获得积分10
1分钟前
李健的小迷弟应助qiuxuan100采纳,获得10
1分钟前
1分钟前
然然然后发布了新的文献求助10
1分钟前
乐乐应助科研通管家采纳,获得10
1分钟前
情怀应助然然然后采纳,获得10
1分钟前
斯文败类应助TTRRCEB采纳,获得10
2分钟前
2分钟前
qiuxuan100发布了新的文献求助10
2分钟前
2分钟前
klpkyx发布了新的文献求助10
2分钟前
qiuxuan100完成签到,获得积分10
2分钟前
英姑应助Becky采纳,获得10
3分钟前
赘婿应助兮兮兮兮兮兮采纳,获得10
3分钟前
3分钟前
一这那西应助科研通管家采纳,获得10
3分钟前
Fngz3完成签到,获得积分10
3分钟前
klpkyx发布了新的文献求助10
3分钟前
4分钟前
4分钟前
4分钟前
Fngz3发布了新的文献求助10
4分钟前
今天只做一件事应助TTRRCEB采纳,获得10
4分钟前
4分钟前
兮兮兮兮兮兮完成签到,获得积分10
4分钟前
klpkyx发布了新的文献求助10
4分钟前
4分钟前
Becky发布了新的文献求助10
4分钟前
4分钟前
tt发布了新的文献求助50
4分钟前
chiyu完成签到,获得积分10
5分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Zeolites: From Fundamentals to Emerging Applications 1500
Architectural Corrosion and Critical Infrastructure 1000
Early Devonian echinoderms from Victoria (Rhombifera, Blastoidea and Ophiocistioidea) 1000
Hidden Generalizations Phonological Opacity in Optimality Theory 1000
Handbook of Social and Emotional Learning, Second Edition 900
translating meaning 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4918177
求助须知:如何正确求助?哪些是违规求助? 4190895
关于积分的说明 13015480
捐赠科研通 3960652
什么是DOI,文献DOI怎么找? 2171317
邀请新用户注册赠送积分活动 1189369
关于科研通互助平台的介绍 1097718