stLearn: integrating spatial location, tissue morphology and gene expression to find cell types, cell-cell interactions and spatial trajectories within undissociated tissues

聚类分析 电池类型 成对比较 背景(考古学) 计算生物学 细胞 空间生态学 生物 平滑的 距离变换 计算机科学 人工智能 遗传学 图像(数学) 计算机视觉 古生物学 生态学
作者
Duy Pham,Xiao Tan,Jun Xu,Laura F. Grice,Pui Yeng Lam,Arti M. Raghubar,Jana Vukovic,Marc J. Ruitenberg,Quan Nguyen
标识
DOI:10.1101/2020.05.31.125658
摘要

ABSTRACT Spatial Transcriptomics is an emerging technology that adds spatial dimensionality and tissue morphology to the genome-wide transcriptional profile of cells in an undissociated tissue. Integrating these three types of data creates a vast potential for deciphering novel biology of cell types in their native morphological context. Here we developed innovative integrative analysis approaches to utilise all three data types to first find cell types, then reconstruct cell type evolution within a tissue, and search for tissue regions with high cell-to-cell interactions. First, for normalisation of gene expression, we compute a distance measure using morphological similarity and neighbourhood smoothing. The normalised data is then used to find clusters that represent transcriptional profiles of specific cell types and cellular phenotypes. Clusters are further sub-clustered if cells are spatially separated. Analysing anatomical regions in three mouse brain sections and 12 human brain datasets, we found the spatial clustering method more accurate and sensitive than other methods. Second, we introduce a method to calculate transcriptional states by pseudo-space-time (PST) distance. PST distance is a function of physical distance (spatial distance) and gene expression distance (pseudotime distance) to estimate the pairwise similarity between transcriptional profiles among cells within a tissue. We reconstruct spatial transition gradients within and between cell types that are connected locally within a cluster, or globally between clusters, by a directed minimum spanning tree optimisation approach for PST distance. The PST algorithm could model spatial transition from non-invasive to invasive cells within a breast cancer dataset. Third, we utilise spatial information and gene expression profiles to identify locations in the tissue where there is both high ligand-receptor interaction activity and diverse cell type co-localisation. These tissue locations are predicted to be hotspots where cell-cell interactions are more likely to occur. We detected tissue regions and ligand-receptor pairs significantly enriched compared to background distribution across a breast cancer tissue. Together, these three algorithms, implemented in a comprehensive Python software stLearn, allow for the elucidation of biological processes within healthy and diseased tissues.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
leavesziqi完成签到,获得积分10
刚刚
揽月完成签到,获得积分10
1秒前
2秒前
YOUYOU发布了新的文献求助10
2秒前
丘比特应助开朗又菱采纳,获得10
2秒前
2秒前
Anna完成签到,获得积分10
3秒前
4秒前
5秒前
95完成签到,获得积分10
5秒前
xiao完成签到,获得积分10
6秒前
6秒前
wskss发布了新的文献求助10
6秒前
科研通AI2S应助dddim采纳,获得10
7秒前
liu发布了新的文献求助10
8秒前
追寻紫安发布了新的文献求助10
9秒前
灿烂千阳发布了新的文献求助10
9秒前
10秒前
robert3324应助葡萄干采纳,获得10
12秒前
脑洞疼应助葡萄干采纳,获得10
12秒前
hyf567完成签到,获得积分10
13秒前
13秒前
14秒前
guoguo发布了新的文献求助20
14秒前
17秒前
呆瓜发布了新的文献求助10
17秒前
18秒前
wenjing发布了新的文献求助10
18秒前
18秒前
完美世界应助黄文娟采纳,获得30
19秒前
19秒前
不安又蓝完成签到 ,获得积分10
20秒前
馒头完成签到,获得积分10
20秒前
天天快乐应助周星星采纳,获得10
20秒前
cmuren99发布了新的文献求助10
21秒前
GXJ发布了新的文献求助20
22秒前
23秒前
馒头发布了新的文献求助50
25秒前
26秒前
26秒前
高分求助中
Shape Determination of Large Sedimental Rock Fragments 2000
Sustainability in Tides Chemistry 2000
Rechtsphilosophie 1000
Bayesian Models of Cognition:Reverse Engineering the Mind 888
A Dissection Guide & Atlas to the Rabbit 600
Very-high-order BVD Schemes Using β-variable THINC Method 568
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3129605
求助须知:如何正确求助?哪些是违规求助? 2780380
关于积分的说明 7747647
捐赠科研通 2435666
什么是DOI,文献DOI怎么找? 1294216
科研通“疑难数据库(出版商)”最低求助积分说明 623601
版权声明 600570