stLearn: integrating spatial location, tissue morphology and gene expression to find cell types, cell-cell interactions and spatial trajectories within undissociated tissues

聚类分析 电池类型 成对比较 背景(考古学) 计算生物学 细胞 空间生态学 生物 平滑的 距离变换 层次聚类 计算机科学 模式识别(心理学) 人工智能 遗传学 图像(数学) 计算机视觉 古生物学 生态学
作者
Duy Pham,Xiao Tan,Jun Xu,Laura F. Grice,Pui Yeng Lam,Arti M. Raghubar,Jana Vukovic,Marc J. Ruitenberg,Quan Nguyen
标识
DOI:10.1101/2020.05.31.125658
摘要

ABSTRACT Spatial Transcriptomics is an emerging technology that adds spatial dimensionality and tissue morphology to the genome-wide transcriptional profile of cells in an undissociated tissue. Integrating these three types of data creates a vast potential for deciphering novel biology of cell types in their native morphological context. Here we developed innovative integrative analysis approaches to utilise all three data types to first find cell types, then reconstruct cell type evolution within a tissue, and search for tissue regions with high cell-to-cell interactions. First, for normalisation of gene expression, we compute a distance measure using morphological similarity and neighbourhood smoothing. The normalised data is then used to find clusters that represent transcriptional profiles of specific cell types and cellular phenotypes. Clusters are further sub-clustered if cells are spatially separated. Analysing anatomical regions in three mouse brain sections and 12 human brain datasets, we found the spatial clustering method more accurate and sensitive than other methods. Second, we introduce a method to calculate transcriptional states by pseudo-space-time (PST) distance. PST distance is a function of physical distance (spatial distance) and gene expression distance (pseudotime distance) to estimate the pairwise similarity between transcriptional profiles among cells within a tissue. We reconstruct spatial transition gradients within and between cell types that are connected locally within a cluster, or globally between clusters, by a directed minimum spanning tree optimisation approach for PST distance. The PST algorithm could model spatial transition from non-invasive to invasive cells within a breast cancer dataset. Third, we utilise spatial information and gene expression profiles to identify locations in the tissue where there is both high ligand-receptor interaction activity and diverse cell type co-localisation. These tissue locations are predicted to be hotspots where cell-cell interactions are more likely to occur. We detected tissue regions and ligand-receptor pairs significantly enriched compared to background distribution across a breast cancer tissue. Together, these three algorithms, implemented in a comprehensive Python software stLearn, allow for the elucidation of biological processes within healthy and diseased tissues.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
1秒前
2秒前
zgxyws完成签到,获得积分10
2秒前
3秒前
SciGPT应助lms采纳,获得10
3秒前
cqh完成签到 ,获得积分10
3秒前
钰c发布了新的文献求助10
4秒前
量子星尘发布了新的文献求助10
5秒前
山谷与花发布了新的文献求助10
6秒前
zhuangzhuang发布了新的文献求助10
6秒前
马里奥发布了新的文献求助10
6秒前
呢喃私语发布了新的文献求助10
7秒前
7秒前
xiezhuren发布了新的文献求助10
7秒前
8秒前
8秒前
玖爱完成签到,获得积分10
9秒前
10秒前
完美世界应助uu采纳,获得10
10秒前
JH发布了新的文献求助10
11秒前
钰c完成签到,获得积分10
11秒前
Fei关注了科研通微信公众号
12秒前
VV发布了新的文献求助10
13秒前
繁星长明发布了新的文献求助10
13秒前
13秒前
大个应助白居易采纳,获得10
13秒前
camille完成签到,获得积分10
14秒前
科研通AI6应助bcl采纳,获得10
14秒前
Ava应助zhuangzhuang采纳,获得10
14秒前
小马甲应助曾经的青槐采纳,获得10
17秒前
科研通AI6应助ddddddd采纳,获得10
18秒前
研友_VZG7GZ应助风中的丝袜采纳,获得10
19秒前
内向苡发布了新的文献求助10
19秒前
wsy发布了新的文献求助10
20秒前
zhuangzhuang完成签到,获得积分10
21秒前
23秒前
寒生完成签到,获得积分10
23秒前
幸福老六完成签到,获得积分10
23秒前
25秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1621
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] | NHBS Field Guides & Natural History 1500
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 1000
Brittle fracture in welded ships 1000
King Tyrant 680
Eurocode 7. Geotechnical design - General rules (BS EN 1997-1:2004+A1:2013) 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5578739
求助须知:如何正确求助?哪些是违规求助? 4663520
关于积分的说明 14747032
捐赠科研通 4604483
什么是DOI,文献DOI怎么找? 2526947
邀请新用户注册赠送积分活动 1496563
关于科研通互助平台的介绍 1465838