亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

stLearn: integrating spatial location, tissue morphology and gene expression to find cell types, cell-cell interactions and spatial trajectories within undissociated tissues

聚类分析 电池类型 成对比较 背景(考古学) 计算生物学 细胞 空间生态学 生物 平滑的 距离变换 层次聚类 计算机科学 模式识别(心理学) 人工智能 遗传学 图像(数学) 计算机视觉 古生物学 生态学
作者
Duy Pham,Xiao Tan,Jun Xu,Laura F. Grice,Pui Yeng Lam,Arti M. Raghubar,Jana Vukovic,Marc J. Ruitenberg,Quan Nguyen
标识
DOI:10.1101/2020.05.31.125658
摘要

ABSTRACT Spatial Transcriptomics is an emerging technology that adds spatial dimensionality and tissue morphology to the genome-wide transcriptional profile of cells in an undissociated tissue. Integrating these three types of data creates a vast potential for deciphering novel biology of cell types in their native morphological context. Here we developed innovative integrative analysis approaches to utilise all three data types to first find cell types, then reconstruct cell type evolution within a tissue, and search for tissue regions with high cell-to-cell interactions. First, for normalisation of gene expression, we compute a distance measure using morphological similarity and neighbourhood smoothing. The normalised data is then used to find clusters that represent transcriptional profiles of specific cell types and cellular phenotypes. Clusters are further sub-clustered if cells are spatially separated. Analysing anatomical regions in three mouse brain sections and 12 human brain datasets, we found the spatial clustering method more accurate and sensitive than other methods. Second, we introduce a method to calculate transcriptional states by pseudo-space-time (PST) distance. PST distance is a function of physical distance (spatial distance) and gene expression distance (pseudotime distance) to estimate the pairwise similarity between transcriptional profiles among cells within a tissue. We reconstruct spatial transition gradients within and between cell types that are connected locally within a cluster, or globally between clusters, by a directed minimum spanning tree optimisation approach for PST distance. The PST algorithm could model spatial transition from non-invasive to invasive cells within a breast cancer dataset. Third, we utilise spatial information and gene expression profiles to identify locations in the tissue where there is both high ligand-receptor interaction activity and diverse cell type co-localisation. These tissue locations are predicted to be hotspots where cell-cell interactions are more likely to occur. We detected tissue regions and ligand-receptor pairs significantly enriched compared to background distribution across a breast cancer tissue. Together, these three algorithms, implemented in a comprehensive Python software stLearn, allow for the elucidation of biological processes within healthy and diseased tissues.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
清脆觅珍发布了新的文献求助10
1秒前
量子星尘发布了新的文献求助10
4秒前
腼腆钵钵鸡完成签到 ,获得积分10
4秒前
CodeCraft应助123456采纳,获得10
4秒前
5秒前
小二郎应助shinn采纳,获得10
5秒前
绝山完成签到,获得积分10
6秒前
flyabc完成签到,获得积分10
8秒前
大模型应助满意的觅夏采纳,获得10
9秒前
害羞的醉卉完成签到 ,获得积分10
10秒前
11秒前
14秒前
14秒前
aaaa发布了新的文献求助10
17秒前
麻瓜完成签到,获得积分10
20秒前
21秒前
21秒前
23秒前
24秒前
shinn发布了新的文献求助10
26秒前
科研通AI6.1应助aaaa采纳,获得10
27秒前
李琪发布了新的文献求助10
27秒前
闰土完成签到 ,获得积分10
29秒前
merry6669发布了新的文献求助10
31秒前
华仔应助chenchunli采纳,获得10
42秒前
noneface完成签到,获得积分10
44秒前
BYGYHQ完成签到 ,获得积分10
45秒前
领导范儿应助shinn采纳,获得10
46秒前
科研通AI6.1应助北宸采纳,获得10
49秒前
52秒前
科研通AI6.1应助js采纳,获得10
53秒前
嘻嘻完成签到 ,获得积分10
54秒前
54秒前
56秒前
56秒前
57秒前
1分钟前
1分钟前
shinn发布了新的文献求助10
1分钟前
岂曰无衣发布了新的文献求助10
1分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Agyptische Geschichte der 21.30. Dynastie 3000
Aerospace Engineering Education During the First Century of Flight 2000
„Semitische Wissenschaften“? 1510
从k到英国情人 1500
sQUIZ your knowledge: Multiple progressive erythematous plaques and nodules in an elderly man 1000
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5772179
求助须知:如何正确求助?哪些是违规求助? 5596564
关于积分的说明 15429271
捐赠科研通 4905254
什么是DOI,文献DOI怎么找? 2639292
邀请新用户注册赠送积分活动 1587214
关于科研通互助平台的介绍 1542061