Inlet Box Structure Optimization of a Large Axial-Flow Fan Using Response Surface Methodology

入口 空气动力学 叶轮 计算流体力学 响应面法 轴流压缩机 优化设计 工程类 流量(数学) 静压 机械工程 结构工程 计算机科学 数学 航空航天工程 几何学 机器学习 气体压缩机
作者
Jin Xiong,Yinkun Zhang,Penghua Guo,Jingyin Li
标识
DOI:10.1115/imece2020-23566
摘要

Abstract Large axial-flow fans are widely used in many fields. The inlet box is an integral part of large axial-flow fans, and a well-designed inlet box could effectively improve fan efficiency. However, the inlet box structure is complicated, and the existing inlet box design method severely depends on the design experience. In this study, we propose a structure optimization design system based on a surrogate model technique for researching the critical structure parameters of the inlet box and accomplishing aerodynamic performance optimization. As for this expensive optimization problem, the design system contains twice optimization procedures by using the Response Surface Methodology (RSM) with the orthogonal design method. The optimization object is an existing large axial-flow fan. The optimization objective is the total pressure efficiency of the fan, and the total pressure rise is the restriction condition. We generate eighteen different inlet boxes connect with the same impeller and outlet pipe by the orthogonal design method and calculated fan aerodynamic performance by CFX software. After the first optimization, we find the key structural parameters by the sensitivity analysis and the reselect variables total of 25 cases are adopted in a further RSM optimal process. The ultimate surrogate model estimates the fan with the optimal inlet box has a better aerodynamic characteristic and a 6.7% total pressure efficiency rise. Finally, we compare the aerodynamic characteristics of the ultimate design fan and the initial fan by CFD simulation. The numerical results show that: the total pressure efficiency is 6.5% higher than that of the initial impeller, and the pressure rise is 3% higher than that of the initial impeller. The result demonstrates that some most critical parameters of the inlet box structure decide the aerodynamic performance, and the inlet box optimization effectively increases the fan efficiency in the meanwhile.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
ZQ完成签到,获得积分10
刚刚
1秒前
搬砖工人发布了新的文献求助10
1秒前
yunwei发布了新的文献求助10
1秒前
英俊的铭应助aaa采纳,获得10
1秒前
2秒前
2秒前
lrrrrrr发布了新的文献求助10
2秒前
香蕉觅云应助文艺的从波采纳,获得10
2秒前
meetland完成签到 ,获得积分10
3秒前
morning发布了新的文献求助10
3秒前
LMH完成签到,获得积分10
3秒前
3秒前
lipel完成签到,获得积分10
3秒前
Ava应助instant采纳,获得10
4秒前
遇事不顺吃吃吃完成签到,获得积分10
5秒前
莫泰甘宁发布了新的文献求助10
5秒前
5秒前
osel发布了新的文献求助10
6秒前
夜绒枭关注了科研通微信公众号
7秒前
gao发布了新的文献求助10
7秒前
小二郎应助王猛采纳,获得30
7秒前
8秒前
今后应助一路硕博采纳,获得10
9秒前
10秒前
10秒前
xzy998应助yunwei采纳,获得10
10秒前
茶叶盒发布了新的文献求助10
11秒前
13秒前
李健应助啵啵啵小太阳采纳,获得10
13秒前
科研通AI6应助__采纳,获得30
13秒前
14秒前
14秒前
852应助susuu采纳,获得10
14秒前
新世界陆战队完成签到 ,获得积分10
15秒前
15秒前
咚咚糖发布了新的文献求助10
16秒前
sqxl完成签到,获得积分10
18秒前
充电宝应助HCQ采纳,获得10
18秒前
Orange应助叫我小可爱采纳,获得10
18秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to Early Childhood Education 1000
List of 1,091 Public Pension Profiles by Region 921
Aerospace Standards Index - 2025 800
Identifying dimensions of interest to support learning in disengaged students: the MINE project 800
流动的新传统主义与新生代农民工的劳动力再生产模式变迁 500
Historical Dictionary of British Intelligence (2014 / 2nd EDITION!) 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5434688
求助须知:如何正确求助?哪些是违规求助? 4547007
关于积分的说明 14205516
捐赠科研通 4467012
什么是DOI,文献DOI怎么找? 2448380
邀请新用户注册赠送积分活动 1439285
关于科研通互助平台的介绍 1416060