Integrating transcriptomics and bulk time course data into a mathematical framework to describe and predict therapeutic resistance in cancer

生物医学 计算机科学 人口 领域(数学) 生物学数据 数据挖掘 机器学习 生物信息学 数学 生物 人口学 社会学 纯数学
作者
Kaitlyn E. Johnson,Grant Howard,Don W. Morgan,Eric Brenner,Andrea Gardner,Richard Durrett,William Mo,Aziz Al’Khafaji,Eduardo D. Sontag,Angela M. Jarrett,Thomas E. Yankeelov,Amy Brock
出处
期刊:Physical Biology [IOP Publishing]
卷期号:18 (1): 016001-016001 被引量:19
标识
DOI:10.1088/1478-3975/abb09c
摘要

Abstract A significant challenge in the field of biomedicine is the development of methods to integrate the multitude of dispersed data sets into comprehensive frameworks to be used to generate optimal clinical decisions. Recent technological advances in single cell analysis allow for high-dimensional molecular characterization of cells and populations, but to date, few mathematical models have attempted to integrate measurements from the single cell scale with other types of longitudinal data. Here, we present a framework that actionizes static outputs from a machine learning model and leverages these as measurements of state variables in a dynamic model of treatment response. We apply this framework to breast cancer cells to integrate single cell transcriptomic data with longitudinal bulk cell population (bulk time course) data. We demonstrate that the explicit inclusion of the phenotypic composition estimate, derived from single cell RNA-sequencing data (scRNA-seq), improves accuracy in the prediction of new treatments with a concordance correlation coefficient (CCC) of 0.92 compared to a prediction accuracy of CCC = 0.64 when fitting on longitudinal bulk cell population data alone. To our knowledge, this is the first work that explicitly integrates single cell clonally-resolved transcriptome datasets with bulk time-course data to jointly calibrate a mathematical model of drug resistance dynamics. We anticipate this approach to be a first step that demonstrates the feasibility of incorporating multiple data types into mathematical models to develop optimized treatment regimens from data.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
Sean完成签到,获得积分10
1秒前
皮三问发布了新的文献求助10
1秒前
MXG完成签到 ,获得积分10
1秒前
1秒前
成就的迎夏完成签到,获得积分10
1秒前
PiTi完成签到,获得积分10
1秒前
醉翁之意不在酒完成签到,获得积分10
2秒前
上官若男应助阿丹采纳,获得10
2秒前
2秒前
小乔应助曾经的借过采纳,获得10
2秒前
Chenyy完成签到,获得积分10
2秒前
2秒前
顺心夜南发布了新的文献求助20
3秒前
YZ完成签到,获得积分10
3秒前
郭郭发布了新的文献求助10
3秒前
是小程啊发布了新的文献求助10
3秒前
完美世界应助沙拉酱采纳,获得10
4秒前
1335804518发布了新的文献求助10
4秒前
Helium发布了新的文献求助10
4秒前
bkagyin应助Yoooo采纳,获得10
4秒前
Akim应助欣忆采纳,获得10
4秒前
keke完成签到,获得积分10
5秒前
方梓言发布了新的文献求助10
5秒前
年轻的小可完成签到 ,获得积分10
5秒前
5秒前
maodou发布了新的文献求助10
5秒前
Lee发布了新的文献求助10
5秒前
轻松戎发布了新的文献求助10
6秒前
6秒前
kwb完成签到,获得积分10
6秒前
ava425完成签到,获得积分10
6秒前
科研通AI6应助努力考博采纳,获得10
6秒前
Pluto完成签到,获得积分10
6秒前
无花果应助赵鹏采纳,获得10
7秒前
7秒前
zxb发布了新的文献求助10
7秒前
蒲公英完成签到,获得积分10
7秒前
apt发布了新的文献求助10
7秒前
7秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 8000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
From Victimization to Aggression 1000
Study and Interlaboratory Validation of Simultaneous LC-MS/MS Method for Food Allergens Using Model Processed Foods 500
Red Book: 2024–2027 Report of the Committee on Infectious Diseases 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5645714
求助须知:如何正确求助?哪些是违规求助? 4769624
关于积分的说明 15031726
捐赠科研通 4804481
什么是DOI,文献DOI怎么找? 2569019
邀请新用户注册赠送积分活动 1526095
关于科研通互助平台的介绍 1485700