Integrating transcriptomics and bulk time course data into a mathematical framework to describe and predict therapeutic resistance in cancer

生物医学 计算机科学 人口 领域(数学) 生物学数据 数据挖掘 机器学习 生物信息学 数学 生物 人口学 社会学 纯数学
作者
Kaitlyn E. Johnson,Grant Howard,Don W. Morgan,Eric Brenner,Andrea Gardner,Richard Durrett,William Mo,Aziz Al’Khafaji,Eduardo D. Sontag,Angela M. Jarrett,Thomas E. Yankeelov,Amy Brock
出处
期刊:Physical Biology [IOP Publishing]
卷期号:18 (1): 016001-016001 被引量:19
标识
DOI:10.1088/1478-3975/abb09c
摘要

Abstract A significant challenge in the field of biomedicine is the development of methods to integrate the multitude of dispersed data sets into comprehensive frameworks to be used to generate optimal clinical decisions. Recent technological advances in single cell analysis allow for high-dimensional molecular characterization of cells and populations, but to date, few mathematical models have attempted to integrate measurements from the single cell scale with other types of longitudinal data. Here, we present a framework that actionizes static outputs from a machine learning model and leverages these as measurements of state variables in a dynamic model of treatment response. We apply this framework to breast cancer cells to integrate single cell transcriptomic data with longitudinal bulk cell population (bulk time course) data. We demonstrate that the explicit inclusion of the phenotypic composition estimate, derived from single cell RNA-sequencing data (scRNA-seq), improves accuracy in the prediction of new treatments with a concordance correlation coefficient (CCC) of 0.92 compared to a prediction accuracy of CCC = 0.64 when fitting on longitudinal bulk cell population data alone. To our knowledge, this is the first work that explicitly integrates single cell clonally-resolved transcriptome datasets with bulk time-course data to jointly calibrate a mathematical model of drug resistance dynamics. We anticipate this approach to be a first step that demonstrates the feasibility of incorporating multiple data types into mathematical models to develop optimized treatment regimens from data.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
依旧发布了新的文献求助10
刚刚
小二郎应助甜美鬼神采纳,获得10
1秒前
房明锴完成签到,获得积分20
1秒前
wanci应助周维采纳,获得10
1秒前
1秒前
2秒前
浮游应助offred采纳,获得10
2秒前
我嘞个豆完成签到,获得积分10
2秒前
wanci应助岩追研采纳,获得10
2秒前
3秒前
3秒前
3秒前
zjq发布了新的文献求助10
3秒前
房明锴发布了新的文献求助10
4秒前
4秒前
znsmaqwdy发布了新的文献求助10
4秒前
情怀应助MH采纳,获得10
4秒前
虚心元绿完成签到,获得积分10
5秒前
5秒前
save发布了新的文献求助10
5秒前
Wang发布了新的文献求助200
5秒前
西木完成签到,获得积分10
5秒前
清爽朋友发布了新的文献求助30
5秒前
5秒前
6秒前
6秒前
狂野绿竹完成签到,获得积分10
7秒前
11完成签到,获得积分10
7秒前
7秒前
hoongyan完成签到 ,获得积分10
9秒前
9秒前
侯笑笑发布了新的文献求助30
9秒前
孙行行完成签到,获得积分10
10秒前
洁净山灵完成签到,获得积分10
10秒前
科研通AI6应助hersy采纳,获得10
10秒前
可积完成签到,获得积分10
10秒前
10秒前
11秒前
znsmaqwdy完成签到,获得积分10
11秒前
Owen应助zsy采纳,获得10
12秒前
高分求助中
计划经济时代的工厂管理与工人状况(1949-1966)——以郑州市国营工厂为例 500
INQUIRY-BASED PEDAGOGY TO SUPPORT STEM LEARNING AND 21ST CENTURY SKILLS: PREPARING NEW TEACHERS TO IMPLEMENT PROJECT AND PROBLEM-BASED LEARNING 500
The Pedagogical Leadership in the Early Years (PLEY) Quality Rating Scale 410
Why America Can't Retrench (And How it Might) 400
Stackable Smart Footwear Rack Using Infrared Sensor 300
Modern Britain, 1750 to the Present (第2版) 300
Writing to the Rhythm of Labor Cultural Politics of the Chinese Revolution, 1942–1976 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4604100
求助须知:如何正确求助?哪些是违规求助? 4012619
关于积分的说明 12424227
捐赠科研通 3693241
什么是DOI,文献DOI怎么找? 2036105
邀请新用户注册赠送积分活动 1069230
科研通“疑难数据库(出版商)”最低求助积分说明 953709