Integrating transcriptomics and bulk time course data into a mathematical framework to describe and predict therapeutic resistance in cancer

生物医学 计算机科学 人口 领域(数学) 生物学数据 数据挖掘 机器学习 生物信息学 数学 生物 人口学 社会学 纯数学
作者
Kaitlyn E. Johnson,Grant Howard,Don W. Morgan,Eric Brenner,Andrea Gardner,Richard Durrett,William Mo,Aziz Al’Khafaji,Eduardo D. Sontag,Angela M. Jarrett,Thomas E. Yankeelov,Amy Brock
出处
期刊:Physical Biology [IOP Publishing]
卷期号:18 (1): 016001-016001 被引量:19
标识
DOI:10.1088/1478-3975/abb09c
摘要

Abstract A significant challenge in the field of biomedicine is the development of methods to integrate the multitude of dispersed data sets into comprehensive frameworks to be used to generate optimal clinical decisions. Recent technological advances in single cell analysis allow for high-dimensional molecular characterization of cells and populations, but to date, few mathematical models have attempted to integrate measurements from the single cell scale with other types of longitudinal data. Here, we present a framework that actionizes static outputs from a machine learning model and leverages these as measurements of state variables in a dynamic model of treatment response. We apply this framework to breast cancer cells to integrate single cell transcriptomic data with longitudinal bulk cell population (bulk time course) data. We demonstrate that the explicit inclusion of the phenotypic composition estimate, derived from single cell RNA-sequencing data (scRNA-seq), improves accuracy in the prediction of new treatments with a concordance correlation coefficient (CCC) of 0.92 compared to a prediction accuracy of CCC = 0.64 when fitting on longitudinal bulk cell population data alone. To our knowledge, this is the first work that explicitly integrates single cell clonally-resolved transcriptome datasets with bulk time-course data to jointly calibrate a mathematical model of drug resistance dynamics. We anticipate this approach to be a first step that demonstrates the feasibility of incorporating multiple data types into mathematical models to develop optimized treatment regimens from data.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
郝富完成签到,获得积分0
刚刚
ccm发布了新的文献求助10
刚刚
Chocolate发布了新的文献求助10
刚刚
新手菜鸟发布了新的文献求助10
2秒前
顾矜应助Sy采纳,获得10
2秒前
淡然立果发布了新的文献求助10
4秒前
杨佳霖发布了新的文献求助10
5秒前
情怀应助雪雪采纳,获得20
6秒前
7秒前
浮游应助牛马小白采纳,获得10
8秒前
8秒前
9秒前
故意的驳发布了新的文献求助10
9秒前
李爱国应助刘海杨采纳,获得10
9秒前
ijcai完成签到 ,获得积分10
9秒前
饱满服饰发布了新的文献求助10
10秒前
11秒前
Chocolate完成签到,获得积分10
12秒前
小谷发布了新的文献求助10
12秒前
13秒前
ccm发布了新的文献求助10
15秒前
丘比特应助cherish采纳,获得10
16秒前
16秒前
17秒前
111完成签到 ,获得积分10
18秒前
20秒前
刘海杨发布了新的文献求助10
21秒前
浮游应助饱满服饰采纳,获得10
22秒前
大聪明应助饱满服饰采纳,获得10
22秒前
科研通AI6应助9527King采纳,获得10
22秒前
hhhhhh完成签到,获得积分10
22秒前
22秒前
如意的书文完成签到,获得积分10
23秒前
ShiyuZuo完成签到,获得积分10
23秒前
初衷未央发布了新的文献求助10
24秒前
24秒前
默默发布了新的文献求助10
26秒前
27秒前
ccm发布了新的文献求助10
28秒前
28秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Bandwidth Choice for Bias Estimators in Dynamic Nonlinear Panel Models 2000
HIGH DYNAMIC RANGE CMOS IMAGE SENSORS FOR LOW LIGHT APPLICATIONS 1500
茶艺师试题库(初级、中级、高级、技师、高级技师) 1000
Constitutional and Administrative Law 1000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.). Frederic G. Reamer 800
Vertebrate Palaeontology, 5th Edition 570
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5360281
求助须知:如何正确求助?哪些是违规求助? 4490974
关于积分的说明 13980731
捐赠科研通 4393548
什么是DOI,文献DOI怎么找? 2413487
邀请新用户注册赠送积分活动 1406306
关于科研通互助平台的介绍 1380773