A machine‐learning based ConvLSTM architecture for NDVI forecasting

归一化差异植被指数 均方误差 计算机科学 基本事实 像素 领域(数学) 人工智能 深度学习 公制(单位) 机器学习 叶面积指数 数据挖掘 农业工程 数学 统计 生物 工程类 运营管理 生态学 经济 纯数学
作者
Rehaan Ahmad,Brian Yang,Guillermo Ettlin,Andrés G. Berger,Pablo Rodríguez‐Bocca
出处
期刊:International Transactions in Operational Research [Wiley]
卷期号:30 (4): 2025-2048 被引量:57
标识
DOI:10.1111/itor.12887
摘要

Abstract Normalized difference vegetation index (NDVI) is an essential remote measurement for agricultural studies because of its strong correlation with crop growth and yield. Accurate and comprehensive NDVI forecasts thus provide effective future projections of crop yield for precise agricultural planning and budgeting. Previous recurrent neural network (RNN) based forecasting methodologies have only performed single‐pixel or large‐area‐average NDVI predictions. We present an alternative RNN‐based deep‐learning architecture, the convolutional long short‐term memory (ConvLSTM), to supply much more comprehensive and detailed NDVI forecasts. In this paper, a single ConvLSTM is capable of 10,000‐pixel field‐level NDVI predictions, providing a more practical methodology for agricultural producers than single‐pixel studies. We compare our model to the parametric crop growth model (PCGM), another multipixel field‐level NDVI forecasting technique. We test each model over the same set of soybean crop field pixels with the root mean square error (RMSE) metric. The training configuration of each model is defined by the number of seasons of historical data used for weight optimization. When the best training configuration of the model found is used, the ConvLSTM obtains an RMSE of 0.0782, outperforming the PCGM's RMSE of 0.0989 (an improvement of 0.0207 in precision represents a large gain in the accuracy of production volume prediction when projected into large production areas). Finally, by comparing the ConvLSTM predictions with the ground truth data over the entire target region rather than just the soybean crop pixels, we discover that the ConvLSTM can also predict NDVI values over the nonsoybean crop as effectively.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
nozero应助gogogogog采纳,获得30
刚刚
香蕉觅云应助调皮的过客采纳,获得30
1秒前
chengbin完成签到,获得积分10
1秒前
科研通AI5应助babao采纳,获得10
2秒前
2秒前
fancy完成签到,获得积分10
2秒前
依依完成签到,获得积分10
2秒前
jonghuang发布了新的文献求助10
2秒前
毕不了业要赔钱应助孙扬采纳,获得30
2秒前
2秒前
2秒前
dnmd发布了新的文献求助10
3秒前
3秒前
zzz完成签到 ,获得积分10
3秒前
Jasper应助东擎采纳,获得10
4秒前
4秒前
量子星尘发布了新的文献求助10
4秒前
4秒前
5秒前
5秒前
天天发布了新的文献求助10
5秒前
满意之玉完成签到,获得积分10
6秒前
无限向lu完成签到,获得积分10
6秒前
zkexuan发布了新的文献求助20
7秒前
蒙开心完成签到 ,获得积分10
8秒前
ldm发布了新的文献求助10
9秒前
毛慢慢发布了新的文献求助10
9秒前
过时的热狗完成签到,获得积分10
10秒前
11秒前
依依发布了新的文献求助10
11秒前
学术疯子发布了新的文献求助10
11秒前
12秒前
12秒前
一木张完成签到,获得积分10
13秒前
小宇完成签到,获得积分10
13秒前
wanci应助八九采纳,获得30
14秒前
ssw完成签到,获得积分10
14秒前
强强科研发布了新的文献求助10
15秒前
15秒前
zkexuan完成签到,获得积分10
15秒前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2700
Neuromuscular and Electrodiagnostic Medicine Board Review 1000
Statistical Methods for the Social Sciences, Global Edition, 6th edition 600
こんなに痛いのにどうして「なんでもない」と医者にいわれてしまうのでしょうか 510
The Insulin Resistance Epidemic: Uncovering the Root Cause of Chronic Disease  500
Walter Gilbert: Selected Works 500
An Annotated Checklist of Dinosaur Species by Continent 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3662106
求助须知:如何正确求助?哪些是违规求助? 3223001
关于积分的说明 9749628
捐赠科研通 2932748
什么是DOI,文献DOI怎么找? 1605829
邀请新用户注册赠送积分活动 758164
科研通“疑难数据库(出版商)”最低求助积分说明 734712