Incentives and Emission Responsibility Allocation in Supply Chains

温室气体 夏普里值 供应链 激励 碳足迹 排放交易 产业组织 微观经济学 价值(数学) 业务 生产(经济) 经济 博弈论 环境经济学 自然资源经济学 计算机科学 营销 机器学习 生物 生态学
作者
Sanjith Gopalakrishnan,Daniel Granot,Frieda Granot,Greys Sošić,Hailong Cui
出处
期刊:Management Science [Institute for Operations Research and the Management Sciences]
卷期号:67 (7): 4172-4190 被引量:103
标识
DOI:10.1287/mnsc.2020.3724
摘要

Because greenhouse-gas (GHG) emissions from the supply chains of just the 2,500 largest global corporations account for more than 20% of global emissions, rationalizing emissions in supply chains could make an important contribution toward meeting the global CO 2 emission-reduction targets agreed upon in the 2015 Paris Climate Agreement. Accordingly, in this paper, we consider supply chains with joint production of GHG emissions, operating under either a carbon-tax regime, wherein a regulator levies a penalty on the emissions generated by the firms in the supply chain, or an internal carbon-pricing scheme. Supply chain leaders, such as Walmart, are assumed to be environmentally motivated to induce their suppliers to abate their emissions. We adopt a cooperative game-theory methodology to derive a footprint-balanced scheme for reapportioning the total carbon emissions amongst the firms in the supply chain. This emission responsibility-allocation scheme, which is the Shapley value of an associated cooperative game, is shown to have several desirable characteristics. In particular, (i) it is transparent and easy to compute; (ii) when the abatement-cost functions of the firms are private information, it incentivizes suppliers to exert pollution-abatement efforts that, among all footprint-balanced allocation schemes, minimize the maximum deviation from the socially optimal pollution level; and (iii) the Shapley value is the unique allocation mechanism satisfying certain contextually desirable properties. This paper was accepted by Jayashankar Swaminathan, operations management.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
翠翠发布了新的文献求助10
1秒前
半山发布了新的文献求助10
2秒前
2秒前
天天快乐应助CO2采纳,获得10
2秒前
隐形曼青应助junzilan采纳,获得10
3秒前
Dksido发布了新的文献求助10
3秒前
4秒前
思源应助卓哥采纳,获得10
4秒前
mysci完成签到,获得积分10
7秒前
8秒前
Quzhengkai发布了新的文献求助10
9秒前
9秒前
10秒前
落寞晓灵完成签到,获得积分10
10秒前
ORAzzz应助翠翠采纳,获得20
11秒前
zoe完成签到,获得积分10
11秒前
习习应助学术小白采纳,获得10
11秒前
12秒前
13秒前
tianny关注了科研通微信公众号
14秒前
14秒前
CO2发布了新的文献求助10
14秒前
桐桐应助zhangscience采纳,获得10
15秒前
求助发布了新的文献求助10
16秒前
buno应助zoe采纳,获得10
17秒前
junzilan发布了新的文献求助10
17秒前
17秒前
细品岁月完成签到 ,获得积分10
17秒前
细心书蕾完成签到 ,获得积分10
18秒前
无花果应助l11x29采纳,获得10
20秒前
20秒前
老詹头发布了新的文献求助10
20秒前
思源应助叫滚滚采纳,获得10
21秒前
22秒前
刘歌完成签到 ,获得积分10
22秒前
阿巡完成签到,获得积分10
22秒前
Chen完成签到,获得积分10
24秒前
LSH970829发布了新的文献求助10
24秒前
哈哈哈完成签到 ,获得积分10
25秒前
汤姆完成签到,获得积分10
25秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527961
求助须知:如何正确求助?哪些是违规求助? 3108159
关于积分的说明 9287825
捐赠科研通 2805882
什么是DOI,文献DOI怎么找? 1540070
邀请新用户注册赠送积分活动 716926
科研通“疑难数据库(出版商)”最低求助积分说明 709808