Hydrogen Generation upon Nanocatalyzed Hydrolysis of Hydrogen-Rich Boron Derivatives: Recent Developments

氨硼烷 纳米材料基催化剂 制氢 催化作用 水解 化学 氢气储存 无机化学 有机化学
作者
Changlong Wang,Qi Wang,Fangyu Fu,Didier Astruc
出处
期刊:Accounts of Chemical Research [American Chemical Society]
卷期号:53 (10): 2483-2493 被引量:119
标识
DOI:10.1021/acs.accounts.0c00525
摘要

ConspectusProduction of hydrogen from nonfossil sources is essential toward the generation of sustainable energy. Hydrogen generation upon hydrolysis of stable hydrogen-rich materials has long been proposed as a possibility of hydrogen disposal on site, because transport of explosive hydrogen gas is dangerous. Hydrolysis of some boron derivatives could rapidly produce large amounts of hydrogen, but this requires the presence of very active catalysts. Indeed, late transition-metal nanocatalysts have recently been developed for the hydrolysis of a few hydrogen-rich precursors.Our research group has focused on the improvement and optimization of highly performing Earth-abundant transition-metal-based nanocatalysts, optimization of remarkable synergies between different metals in nanoalloys, supports including positive synergy with nanoparticles (NPs) for rapid hydrogen generation, comparison between various endo- or exoreceptors working as homogeneous and heterogeneous supports, mechanistic research, and comparison of the nanocatalyzed hydrolysis of several boron hydrides.First, hydrogen production upon hydrolysis of ammonia borane, AB (3 mol H2 per mol AB) was examined with heterogeneous endoreceptors. Thus, a highly performing Ni@ZIF-8 nanocatalyst was found to be superior over other Earth-abundant nanocatalysts and supports. With 85.7 molH2·molcat-1·min-1 at 25 °C, this Ni nanocatalyst surpassed the results of previous Earth-abundant nanocatalysts. The presence of NaOH accelerated the reaction, and a remarkable pH-dependent "on-off" control of the H2 production was established. Bimetallic nanoalloys Ni-Pt@ZIF-8 showed a dramatic volcano effect optimized with a nanoalloy containing 2/3 Ni and 1/3 Pt. The rate reached 600 molH2·molcat-1·min-1 and 2222 molH2·molPt-1·min-1 at 20 °C, which much overtook the performances of both related nanocatalysts Ni@ZIF-8 and Pt@ZIF-8. Next, hydrogen production was also researched via hydrolysis of sodium borohydride (4 mol H2 per mol NaBH4) using nanocatalysts in ZIF-8, and, among Earth-abundant nanocatalysts, Co@ZIF-8 showed the best performance, outperforming previous Co nanocatalysts. For exoreceptors, "click" dendrimers containing triazole ligands on their tripodal tethers were used as supports for homogeneous (semiheterogeneous) catalysis of both AB and NaBH4 hydrolysis. For both reactions, Co was found to be the best Earth-abundant metal, Pt the best noble metal, and Co1Pt1 the best nanoalloy, with synergistic effects. Based on kinetic measurements and kinetic isotope effects for all of these reactions, mechanisms are proposed and the hydrogen produced was further used in tandem reactions. Overall, dramatic triple synergies between these nanocatalyst components have allowed hydrogen release within a few seconds under ambient conditions. These nanocatalyst improvements and mechanistic findings should also inspire further nanocatalyst design in various areas of hydrogen production.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
万能图书馆应助江鑫楷采纳,获得10
刚刚
zzz完成签到,获得积分10
刚刚
王qc发布了新的文献求助10
1秒前
2秒前
金鸡奖完成签到,获得积分20
4秒前
无极微光应助ss_hHe采纳,获得20
4秒前
4秒前
Akira发布了新的文献求助10
6秒前
oxear发布了新的文献求助50
6秒前
7秒前
7秒前
jialin完成签到,获得积分10
8秒前
8秒前
9秒前
赘婿应助mt1314采纳,获得10
10秒前
10秒前
10秒前
执念发布了新的文献求助30
11秒前
量子星尘发布了新的文献求助10
12秒前
ADDED发布了新的文献求助10
12秒前
12秒前
aaa发布了新的文献求助10
13秒前
CMLSHUTCM发布了新的文献求助10
13秒前
13秒前
温暖发布了新的文献求助10
14秒前
文杰发布了新的文献求助10
14秒前
18秒前
Hmbb完成签到,获得积分10
18秒前
充电宝应助Planck采纳,获得10
19秒前
李爱国应助羽安采纳,获得10
19秒前
19秒前
20秒前
wy.he举报zou求助涉嫌违规
22秒前
阿妤发布了新的文献求助10
23秒前
研友_VZG7GZ应助sxw采纳,获得10
24秒前
江鑫楷发布了新的文献求助10
25秒前
石奥绅发布了新的文献求助10
25秒前
25秒前
知性的寻芹应助学术小白采纳,获得10
26秒前
photodetectors完成签到,获得积分20
28秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 8000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
From Victimization to Aggression 1000
Study and Interlaboratory Validation of Simultaneous LC-MS/MS Method for Food Allergens Using Model Processed Foods 500
Red Book: 2024–2027 Report of the Committee on Infectious Diseases 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5646495
求助须知:如何正确求助?哪些是违规求助? 4771505
关于积分的说明 15035374
捐赠科研通 4805305
什么是DOI,文献DOI怎么找? 2569593
邀请新用户注册赠送积分活动 1526581
关于科研通互助平台的介绍 1485858