Systematic analysis of wavelet denoising methods for neural signal processing

小波 阈值 模式识别(心理学) 降噪 人工智能 计算机科学 噪音(视频) 哈尔小波转换 尖峰分选 小波变换 信号(编程语言) 数学 离散小波变换 小波包分解 语音识别 聚类分析 图像(数学) 程序设计语言
作者
Giulia Baldazzi,Giuliana Solinas,Jaume del Valle,Massimo Barbaro,Silvestro Micera,Luigi Raffo,Danilo Pani
出处
期刊:Journal of Neural Engineering [IOP Publishing]
卷期号:17 (6): 066016-066016 被引量:26
标识
DOI:10.1088/1741-2552/abc741
摘要

Objective.Among the different approaches for denoising neural signals, wavelet-based methods are widely used due to their ability to reduce in-band noise. All wavelet denoising algorithms have a common structure, but their effectiveness strongly depends on several implementation choices, including the mother wavelet, the decomposition level, the threshold definition, and the way it is applied (i.e. the thresholding). In this work, we investigated these factors to quantitatively assess their effects on neural signals in terms of noise reduction and morphology preservation, which are important when spike sorting is required downstream.Approach.Based on the spectral characteristics of the neural signal, according to the sampling rate of the signals, we considered two possible decomposition levels and identified the best-performing mother wavelet. Then, we compared different threshold estimation and thresholding methods and, for the best ones, we also evaluated their effect on clearing the approximation coefficients. The assessments were performed on synthetic signals that had been corrupted by different types of noise and on a murine peripheral nervous system dataset, both of which were sampled at about 16 kHz. The results were statistically analysed in terms of their Pearson's correlation coefficients, root-mean-square errors, and signal-to-noise ratios.Main results.As expected, the wavelet implementation choices greatly influenced the processing performance. Overall, the Haar wavelet with a five-level decomposition, hard thresholding method, and the threshold proposed by Hanet al(2007) achieved the best outcomes. Based on the adopted performance metrics, wavelet denoising with these parametrizations outperformed conventional 300-3000 Hz linear bandpass filtering.Significance.These results can be used to guide the reasoned and accurate selection of wavelet denoising implementation choices in the context of neural signal processing, particularly when spike-morphology preservation is required.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
dxm完成签到,获得积分10
刚刚
刚刚
橘子完成签到,获得积分10
1秒前
聪明小于完成签到 ,获得积分10
1秒前
星星完成签到,获得积分10
2秒前
虚拟的眼神完成签到,获得积分10
2秒前
831143完成签到 ,获得积分0
2秒前
二尖瓣后叶举报任性雪糕求助涉嫌违规
2秒前
3秒前
VaVa完成签到,获得积分10
3秒前
风中的丝袜完成签到,获得积分10
4秒前
星辰完成签到,获得积分10
4秒前
4秒前
steve完成签到,获得积分0
5秒前
健康的绮晴完成签到,获得积分10
5秒前
SciGPT应助nav采纳,获得10
5秒前
5秒前
星雪完成签到,获得积分10
7秒前
7秒前
柒_l完成签到,获得积分10
8秒前
ygmxz完成签到,获得积分10
8秒前
黄景瑜完成签到,获得积分10
8秒前
11完成签到 ,获得积分10
9秒前
jagger完成签到,获得积分10
9秒前
9秒前
冷艳的春天完成签到,获得积分10
9秒前
阿星捌完成签到 ,获得积分10
9秒前
bettersy完成签到,获得积分10
10秒前
rafa完成签到 ,获得积分10
10秒前
三山三完成签到,获得积分10
10秒前
10秒前
Hou完成签到,获得积分10
11秒前
eleusis完成签到 ,获得积分10
11秒前
ygmxz发布了新的文献求助10
11秒前
宁为树完成签到,获得积分10
12秒前
vivian完成签到 ,获得积分10
12秒前
ANQ发布了新的文献求助10
13秒前
dcc完成签到,获得积分10
13秒前
13秒前
奶糖最可爱完成签到,获得积分10
13秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Mechanistic Modeling of Gas-Liquid Two-Phase Flow in Pipes 2500
Comprehensive Computational Chemistry 1000
Kelsen’s Legacy: Legal Normativity, International Law and Democracy 1000
Conference Record, IAS Annual Meeting 1977 610
Interest Rate Modeling. Volume 3: Products and Risk Management 600
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3550536
求助须知:如何正确求助?哪些是违规求助? 3126839
关于积分的说明 9370757
捐赠科研通 2825985
什么是DOI,文献DOI怎么找? 1553508
邀请新用户注册赠送积分活动 724889
科研通“疑难数据库(出版商)”最低求助积分说明 714494