Deep Learning-Based Reverse Method of Binary Protocol

计算机科学 领域(数学) 协议(科学) 人工智能 数据挖掘 入侵检测系统 逆向工程 鉴定(生物学) 网络安全 机器学习 计算机网络 生物 病理 医学 植物 程序设计语言 纯数学 替代医学 数学
作者
Chenglong Yang,Cai Fu,Yekui Qian,Hong Yao,Guanyun Feng,Lansheng Han
出处
期刊:Communications in computer and information science 卷期号:: 606-624 被引量:8
标识
DOI:10.1007/978-981-15-9129-7_42
摘要

With the growth of network equipment, the security of network access environment becomes particularly important. Many network security technologies, such as vulnerability mining, fuzzy testing and intrusion detection, have attracted more and more attention. However, the effectiveness of these security technologies will be greatly reduced in the face of unknown protocols. By automatically extracting the format information of unknown protocols through the protocol reverse technology, the processing capability of the above security technologies in the face of unknown protocols can be enhanced. In this paper, by analyzing the changing characteristics of protocol fields, a field sequence coding method is proposed, which is suitable for reflecting the field sequence characteristics of different protocols and can improve the generalization ability of the model. Using the above field sequence coding method, a field classification model for unknown protocols is implemented based on the LSTM-FCN network, which is widely used in time series classification tasks. Finally, a binary protocol reverse method based on deep learning is proposed. The method is based on the field classification model and realizes the division and type identification of unknown protocol fields according to the classification results. In the experiment, the field classification model has high accuracy and recall in different protocols, which shows that the model has the ability to identify the field type according to the changing characteristics of the field. The proposed protocol reverse method also accurately and quickly identifies the field and its type, proving the reverse ability of the method to unknown binary protocols.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
铸一字错发布了新的文献求助10
刚刚
受伤书文完成签到,获得积分10
1秒前
Yvonne发布了新的文献求助10
1秒前
1秒前
温柔的十三完成签到,获得积分10
1秒前
Ll发布了新的文献求助10
2秒前
nikai发布了新的文献求助10
2秒前
圣晟胜发布了新的文献求助10
2秒前
大个应助科研通管家采纳,获得10
2秒前
2秒前
田様应助科研通管家采纳,获得10
2秒前
香蕉觅云应助科研通管家采纳,获得10
2秒前
李爱国应助科研通管家采纳,获得10
2秒前
Leif应助科研通管家采纳,获得10
3秒前
桐桐应助科研通管家采纳,获得10
3秒前
Owen应助科研通管家采纳,获得10
3秒前
3秒前
深情安青应助科研通管家采纳,获得10
3秒前
shouyu29应助科研通管家采纳,获得10
3秒前
3秒前
小金应助科研通管家采纳,获得20
3秒前
牛逼的昂完成签到,获得积分10
3秒前
muzi给muzi的求助进行了留言
3秒前
NexusExplorer应助科研通管家采纳,获得10
3秒前
3秒前
Jasper应助科研通管家采纳,获得10
4秒前
yuhang完成签到 ,获得积分10
4秒前
汉堡包应助科研通管家采纳,获得10
4秒前
果汁完成签到,获得积分10
4秒前
NexusExplorer应助Zoe采纳,获得10
4秒前
MADKAI发布了新的文献求助10
5秒前
5秒前
领导范儿应助junzilan采纳,获得10
6秒前
打打应助激动的一手采纳,获得10
6秒前
酷波er应助艺玲采纳,获得10
7秒前
longtengfei发布了新的文献求助10
7秒前
8秒前
8秒前
ZL发布了新的文献求助10
10秒前
luca发布了新的文献求助10
10秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527699
求助须知:如何正确求助?哪些是违规求助? 3107752
关于积分的说明 9286499
捐赠科研通 2805513
什么是DOI,文献DOI怎么找? 1539954
邀请新用户注册赠送积分活动 716878
科研通“疑难数据库(出版商)”最低求助积分说明 709759