Battery Health Prediction Using Fusion-Based Feature Selection and Machine Learning

特征选择 克里金 人工智能 计算机科学 机器学习 人工神经网络 数据预处理 支持向量机 数据挖掘 相关向量机 传感器融合
作者
Xiao Hu,Yunhong Che,Xianke Lin,Simona Onori
出处
期刊:IEEE Transactions on Transportation Electrification 卷期号:7 (2): 382-398 被引量:255
标识
DOI:10.1109/tte.2020.3017090
摘要

State of health (SOH) is a key parameter to assess lithium-ion battery feasibility for secondary usage applications. SOH estimation based on machine learning has attracted great attention in recent years and holds potentials for battery informatization and cloud battery management techniques. In this article, a comprehensive study of the data-driven SOH estimation methods is conducted. A new classification for health indicators (HIs) is proposed where the HIs are divided into the measured variables and calculated variables. To illustrate the significance of data preprocessing, four noise reduction methods are assessed in the HIs extraction process; different feature selection methods, including filter-based method, wrapper-based method, and fusion-based method, are applied to select HIs subsets. The four widely used machine learning algorithms, including artificial neural network, support vector machine, relevance vector machine, and Gaussian process regression (GPR), are applied and compared. In order to evaluate the estimation performance in potential real usages under future big data era, the three HIs selection methods and four machine learning methods are evaluated using three public data sets and two estimation strategies. The results show that the combination of the fusion-based selection method and GPR has an overall superior estimation performance in terms of both accuracy and computational efficiency.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
不如看海发布了新的文献求助10
2秒前
dreamwalk完成签到 ,获得积分10
3秒前
田様应助yuting采纳,获得10
5秒前
科研通AI2S应助博修采纳,获得10
5秒前
bofu发布了新的文献求助10
5秒前
6秒前
星辰大海应助大号安全蛋采纳,获得10
7秒前
万能图书馆应助郑郑得富采纳,获得10
8秒前
bofu发布了新的文献求助10
10秒前
11秒前
12秒前
13秒前
paper完成签到,获得积分10
13秒前
Jinna706完成签到,获得积分10
14秒前
量子星尘发布了新的文献求助10
15秒前
健忘惜海发布了新的文献求助10
15秒前
bofu发布了新的文献求助10
16秒前
16秒前
Liang发布了新的文献求助20
17秒前
陈最完成签到,获得积分10
17秒前
18秒前
18秒前
run完成签到,获得积分10
19秒前
19秒前
AI发布了新的文献求助20
20秒前
HJL完成签到 ,获得积分10
21秒前
bofu发布了新的文献求助30
21秒前
研友_LBaaX8发布了新的文献求助20
22秒前
yoga发布了新的文献求助10
22秒前
fzzf发布了新的文献求助30
23秒前
yuting发布了新的文献求助10
24秒前
鱼鱼鱼发布了新的文献求助10
26秒前
Liang完成签到,获得积分10
27秒前
bofu发布了新的文献求助10
27秒前
30秒前
31秒前
王天天完成签到 ,获得积分10
32秒前
bofu发布了新的文献求助10
33秒前
yuting完成签到,获得积分10
34秒前
思源应助英俊的晟睿采纳,获得10
34秒前
高分求助中
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Cognitive Neuroscience: The Biology of the Mind (Sixth Edition) 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
Christian Women in Chinese Society: The Anglican Story 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3961041
求助须知:如何正确求助?哪些是违规求助? 3507280
关于积分的说明 11135306
捐赠科研通 3239705
什么是DOI,文献DOI怎么找? 1790347
邀请新用户注册赠送积分活动 872359
科研通“疑难数据库(出版商)”最低求助积分说明 803150