Battery Health Prediction Using Fusion-Based Feature Selection and Machine Learning

特征选择 克里金 人工智能 计算机科学 机器学习 人工神经网络 数据预处理 支持向量机 数据挖掘 相关向量机 传感器融合
作者
Xiao Hu,Yunhong Che,Xianke Lin,Simona Onori
出处
期刊:IEEE Transactions on Transportation Electrification 卷期号:7 (2): 382-398 被引量:228
标识
DOI:10.1109/tte.2020.3017090
摘要

State of health (SOH) is a key parameter to assess lithium-ion battery feasibility for secondary usage applications. SOH estimation based on machine learning has attracted great attention in recent years and holds potentials for battery informatization and cloud battery management techniques. In this article, a comprehensive study of the data-driven SOH estimation methods is conducted. A new classification for health indicators (HIs) is proposed where the HIs are divided into the measured variables and calculated variables. To illustrate the significance of data preprocessing, four noise reduction methods are assessed in the HIs extraction process; different feature selection methods, including filter-based method, wrapper-based method, and fusion-based method, are applied to select HIs subsets. The four widely used machine learning algorithms, including artificial neural network, support vector machine, relevance vector machine, and Gaussian process regression (GPR), are applied and compared. In order to evaluate the estimation performance in potential real usages under future big data era, the three HIs selection methods and four machine learning methods are evaluated using three public data sets and two estimation strategies. The results show that the combination of the fusion-based selection method and GPR has an overall superior estimation performance in terms of both accuracy and computational efficiency.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
三月雪卿完成签到,获得积分10
1秒前
1秒前
0911wxt发布了新的文献求助10
1秒前
1秒前
2秒前
无花果应助su采纳,获得10
3秒前
dachengzi发布了新的文献求助10
4秒前
6秒前
F0restL1N完成签到,获得积分10
6秒前
6秒前
新开完成签到,获得积分10
7秒前
7秒前
gaugua完成签到,获得积分10
7秒前
Lucas应助未月初二采纳,获得10
7秒前
8秒前
SciGPT应助czm采纳,获得10
9秒前
9秒前
充电宝应助小巧晓夏采纳,获得10
10秒前
沧笙踏歌应助小元采纳,获得10
10秒前
红橙黄绿蓝靛紫111完成签到,获得积分10
10秒前
温暖寻雪发布了新的文献求助10
11秒前
自觉大门完成签到,获得积分10
12秒前
华仔应助科研通管家采纳,获得10
13秒前
共享精神应助科研通管家采纳,获得10
13秒前
脑洞疼应助科研通管家采纳,获得10
13秒前
羡三岁应助科研通管家采纳,获得10
13秒前
dachengzi完成签到,获得积分10
13秒前
木头人应助科研通管家采纳,获得20
13秒前
情怀应助科研通管家采纳,获得10
13秒前
顾矜应助科研通管家采纳,获得10
13秒前
完美世界应助科研通管家采纳,获得10
13秒前
慕青应助科研通管家采纳,获得10
14秒前
14秒前
胡萝卜棒棒糖完成签到,获得积分10
14秒前
羡三岁应助科研通管家采纳,获得10
14秒前
今后应助科研通管家采纳,获得10
14秒前
桐桐应助科研通管家采纳,获得10
14秒前
14秒前
橘子味棒冰完成签到,获得积分10
16秒前
zhulongji完成签到,获得积分10
17秒前
高分求助中
Licensing Deals in Pharmaceuticals 2019-2024 3000
Cognitive Paradigms in Knowledge Organisation 2000
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger Heßler, Claudia, Rud 1000
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 1000
Natural History of Mantodea 螳螂的自然史 1000
A Photographic Guide to Mantis of China 常见螳螂野外识别手册 800
How Maoism Was Made: Reconstructing China, 1949-1965 800
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 量子力学 冶金 电极
热门帖子
关注 科研通微信公众号,转发送积分 3315957
求助须知:如何正确求助?哪些是违规求助? 2947729
关于积分的说明 8538133
捐赠科研通 2623808
什么是DOI,文献DOI怎么找? 1435496
科研通“疑难数据库(出版商)”最低求助积分说明 665607
邀请新用户注册赠送积分活动 651454