A twelve-gene signature for survival prediction in malignant melanoma patients

基因签名 黑色素瘤 签名(拓扑) 医学 肿瘤科 内科学 计算生物学 基因 癌症研究 生物 遗传学 基因表达 数学 几何学
作者
Lebin Song,Qijie Zhang,Xiaoyuan Hou,Yanyan Xiu,Lin Chen,Ninghong Song,Yan Lü
出处
期刊:Annals of Translational Medicine [AME Publishing Company]
卷期号:8 (6): 312-312 被引量:18
标识
DOI:10.21037/atm.2020.02.132
摘要

Melanoma is defined as a highly mutational heterogeneous disease containing numerous alternations of the molecule. However, due to the phenotypically and genetically heterogeneity of malignant melanoma, conventional clinical characteristics remain restricted or limited in the ability to accurately predict individual outcomes and survival. This study aimed to establish an accurate gene expression signature to predict melanoma prognosis.In this study, we established an RNA sequencing-based 12-gene signature data of melanoma patients obtained from 2 independent databases: the Cancer Genome Atlas (TCGA) database and the Gene Expression Omnibus (GEO) database. We evaluated the quality of each gene to predict survival conditions in each database by employing univariate and multivariate regression models. A prognostic risk score based on a prognostic signature was determined. This prognostic gene signature further classified patients into low-risk and high-risk groups.Based on a prognostic signature, a prognostic risk score was determined. This prognostic gene signature further divided the patients into low-risk and high-risk groups. In the chemotherapy and radiotherapy groups of the TCGA cohort and V-raf murine sarcoma viral oncogene homolog B1 (BRAF) expression group in the GEO cohort, patients in the low-risk group had a longer survival duration compared to patients in the high-risk group. Nevertheless, the immunotherapy group in the TCGA database and neuroblastoma RAS viral oncogene homolog (NRAS) expression group in the GEO database had no significant differences in statistics. Moreover, this gene signature was associated with patient prognosis regardless of whether the Breslow depth was greater than or less than 3.75 mm. Stratified gene set enrichment analysis (GSEA) revealed that certain immune-related pathways, such as the T-cell signaling pathway, chemokine signaling pathway, and primary immunodeficiency, were significantly enriched in the low-risk group of both TCGA and GEO cohorts. This information implied the immune-related properties of the 12-gene signature.Our study emphasizes the significance of the gene expression signature in that it may be an indispensable prognostic predictor in melanoma and has great potential for application in personalized treatment.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
专注俊驰发布了新的文献求助10
刚刚
共享精神应助segovia_tju采纳,获得10
刚刚
胡桃发布了新的文献求助10
1秒前
lh发布了新的文献求助10
1秒前
1秒前
2秒前
2秒前
3秒前
3秒前
3秒前
fansuerte发布了新的文献求助30
4秒前
GY发布了新的文献求助10
4秒前
5秒前
dengqin完成签到 ,获得积分10
5秒前
超帅的姒完成签到,获得积分10
5秒前
科研通AI2S应助hyj采纳,获得30
5秒前
东丶发布了新的文献求助10
5秒前
阿喜完成签到,获得积分10
6秒前
研友_8o5V2n发布了新的文献求助30
7秒前
qian72133发布了新的文献求助10
7秒前
阿朱发布了新的文献求助30
7秒前
朴实山兰完成签到,获得积分10
7秒前
7秒前
anyilin完成签到,获得积分10
8秒前
量子星尘发布了新的文献求助10
8秒前
8秒前
阿喜发布了新的文献求助10
8秒前
阿梦发布了新的文献求助10
10秒前
10秒前
wallonce发布了新的文献求助10
11秒前
林强完成签到,获得积分10
13秒前
13秒前
量子星尘发布了新的文献求助10
14秒前
满满发布了新的文献求助10
14秒前
爆米花应助专注俊驰采纳,获得10
14秒前
wen123发布了新的文献求助10
14秒前
安伊发布了新的文献求助10
15秒前
小马甲应助东丶采纳,获得10
15秒前
17秒前
在水一方应助正直的西牛采纳,获得10
17秒前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2700
Neuromuscular and Electrodiagnostic Medicine Board Review 1000
Statistical Methods for the Social Sciences, Global Edition, 6th edition 600
こんなに痛いのにどうして「なんでもない」と医者にいわれてしまうのでしょうか 510
Walter Gilbert: Selected Works 500
An Annotated Checklist of Dinosaur Species by Continent 500
岡本唐貴自伝的回想画集 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3659737
求助须知:如何正确求助?哪些是违规求助? 3221260
关于积分的说明 9739495
捐赠科研通 2930491
什么是DOI,文献DOI怎么找? 1604479
邀请新用户注册赠送积分活动 757292
科研通“疑难数据库(出版商)”最低求助积分说明 734350