清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

Toward Adaptive Knowledge Transfer in Multifactorial Evolutionary Computation

渡线 人类多任务处理 计算机科学 进化计算 知识转移 进化算法 过程(计算) 趋同(经济学) 人工智能 数学优化 数学 知识管理 操作系统 经济 认知心理学 经济增长 心理学
作者
Lei Zhou,Liang Feng,Kay Chen Tan,Jinghui Zhong,Zexuan Zhu,Kai Liu,Chao Chen
出处
期刊:IEEE transactions on cybernetics [Institute of Electrical and Electronics Engineers]
卷期号:51 (5): 2563-2576 被引量:167
标识
DOI:10.1109/tcyb.2020.2974100
摘要

A multifactorial evolutionary algorithm (MFEA) is a recently proposed algorithm for evolutionary multitasking, which optimizes multiple optimization tasks simultaneously. With the design of knowledge transfer among different tasks, MFEA has demonstrated the capability to outperform its single-task counterpart in terms of both convergence speed and solution quality. In MFEA, the knowledge transfer across tasks is realized via the crossover between solutions that possess different skill factors. This crossover is thus essential to the performance of MFEA. However, we note that the present MFEA and most of its existing variants only employ a single crossover for knowledge transfer, and fix it throughout the evolutionary search process. As different crossover operators have a unique bias in generating offspring, the appropriate configuration of crossover for knowledge transfer in MFEA is necessary toward robust search performance, for solving different problems. Nevertheless, to the best of our knowledge, there is no effort being conducted on the adaptive configuration of crossovers in MFEA for knowledge transfer, and this article thus presents an attempt to fill this gap. In particular, here, we first investigate how different types of crossover affect the knowledge transfer in MFEA on both single-objective (SO) and multiobjective (MO) continuous optimization problems. Furthermore, toward robust and efficient multitask optimization performance, we propose a new MFEA with adaptive knowledge transfer (MFEA-AKT), in which the crossover operator employed for knowledge transfer is self-adapted based on the information collected along the evolutionary search process. To verify the effectiveness of the proposed method, comprehensive empirical studies on both SO and MO multitask benchmarks have been conducted. The experimental results show that the proposed MFEA-AKT is able to identify the appropriate knowledge transfer crossover for different optimization problems and even at different optimization stages along the search, which thus leads to superior or competitive performances when compared to the MFEAs with fixed knowledge transfer crossover operators.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
司徒天动发布了新的文献求助10
8秒前
量子星尘发布了新的文献求助10
13秒前
司徒天动完成签到,获得积分10
20秒前
量子星尘发布了新的文献求助10
26秒前
bkagyin应助科研通管家采纳,获得10
34秒前
34秒前
量子星尘发布了新的文献求助10
42秒前
50秒前
量子星尘发布了新的文献求助10
52秒前
量子星尘发布了新的文献求助10
1分钟前
量子星尘发布了新的文献求助10
1分钟前
joe完成签到 ,获得积分0
1分钟前
1分钟前
量子星尘发布了新的文献求助100
1分钟前
量子星尘发布了新的文献求助10
1分钟前
Physio发布了新的文献求助10
2分钟前
量子星尘发布了新的文献求助10
2分钟前
量子星尘发布了新的文献求助10
2分钟前
2分钟前
dominus完成签到,获得积分10
2分钟前
量子星尘发布了新的文献求助10
2分钟前
2分钟前
量子星尘发布了新的文献求助10
2分钟前
Physio完成签到,获得积分10
2分钟前
量子星尘发布了新的文献求助10
2分钟前
量子星尘发布了新的文献求助10
2分钟前
量子星尘发布了新的文献求助10
3分钟前
3分钟前
研友_VZG7GZ应助zhyp505采纳,获得10
3分钟前
量子星尘发布了新的文献求助10
3分钟前
YUYUYU完成签到 ,获得积分10
3分钟前
超男完成签到 ,获得积分10
3分钟前
CC完成签到,获得积分10
3分钟前
量子星尘发布了新的文献求助10
3分钟前
4分钟前
量子星尘发布了新的文献求助10
4分钟前
4分钟前
量子星尘发布了新的文献求助30
4分钟前
量子星尘发布了新的文献求助10
4分钟前
4分钟前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2700
Neuromuscular and Electrodiagnostic Medicine Board Review 1000
Statistical Methods for the Social Sciences, Global Edition, 6th edition 600
こんなに痛いのにどうして「なんでもない」と医者にいわれてしまうのでしょうか 510
Walter Gilbert: Selected Works 500
An Annotated Checklist of Dinosaur Species by Continent 500
岡本唐貴自伝的回想画集 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3661054
求助须知:如何正确求助?哪些是违规求助? 3222214
关于积分的说明 9744049
捐赠科研通 2931835
什么是DOI,文献DOI怎么找? 1605234
邀请新用户注册赠送积分活动 757780
科研通“疑难数据库(出版商)”最低求助积分说明 734518