A Graph Convolutional Network–Based Method for Chemical-Protein Interaction Extraction: Algorithm Development

计算机科学 判决 依赖关系图 编码 自然语言处理 图形 信息抽取 人工智能 关系抽取 依赖关系(UML) 知识图 生物医学文本挖掘 机器学习 理论计算机科学 文本挖掘 基因 化学 生物化学
作者
Erniu Wang,Fan Wang,Zhihao Yang,Lei Wang,Yin Zhang,Hongfei Lin,Jian Wang
出处
期刊:JMIR medical informatics [JMIR Publications Inc.]
卷期号:8 (5): e17643-e17643 被引量:12
标识
DOI:10.2196/17643
摘要

Extracting the interactions between chemicals and proteins from the biomedical literature is important for many biomedical tasks such as drug discovery, medicine precision, and knowledge graph construction. Several computational methods have been proposed for automatic chemical-protein interaction (CPI) extraction. However, the majority of these proposed models cannot effectively learn semantic and syntactic information from complex sentences in biomedical texts.To relieve this problem, we propose a method to effectively encode syntactic information from long text for CPI extraction.Since syntactic information can be captured from dependency graphs, graph convolutional networks (GCNs) have recently drawn increasing attention in natural language processing. To investigate the performance of a GCN on CPI extraction, this paper proposes a novel GCN-based model. The model can effectively capture sequential information and long-range syntactic relations between words by using the dependency structure of input sentences.We evaluated our model on the ChemProt corpus released by BioCreative VI; it achieved an F-score of 65.17%, which is 1.07% higher than that of the state-of-the-art system proposed by Peng et al. As indicated by the significance test (P<.001), the improvement is significant. It indicates that our model is effective in extracting CPIs. The GCN-based model can better capture the semantic and syntactic information of the sentence compared to other models, therefore alleviating the problems associated with the complexity of biomedical literature.Our model can obtain more information from the dependency graph than previously proposed models. Experimental results suggest that it is competitive to state-of-the-art methods and significantly outperforms other methods on the ChemProt corpus, which is the benchmark data set for CPI extraction.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
wsr完成签到,获得积分10
1秒前
Owen应助jdj采纳,获得10
3秒前
科研通AI2S应助taowang采纳,获得10
4秒前
4秒前
假面绅士发布了新的文献求助10
5秒前
5秒前
科研通AI2S应助罗备采纳,获得10
5秒前
有人应助罗备采纳,获得10
5秒前
CipherSage应助罗备采纳,获得10
5秒前
jiabaoyu完成签到 ,获得积分10
7秒前
科研通AI2S应助逸白采纳,获得10
7秒前
迷路的映雁完成签到 ,获得积分10
8秒前
li发布了新的文献求助10
11秒前
11秒前
南江悍匪完成签到,获得积分10
13秒前
思源应助zzz采纳,获得10
14秒前
qqqqq完成签到,获得积分10
14秒前
14秒前
隐形曼青应助cultromics采纳,获得20
14秒前
跳跃雯完成签到 ,获得积分10
15秒前
Toni完成签到,获得积分10
15秒前
大模型应助汤锐采纳,获得10
16秒前
Lily完成签到,获得积分10
17秒前
Akim应助科研通管家采纳,获得10
17秒前
科研通AI2S应助科研通管家采纳,获得10
17秒前
英姑应助科研通管家采纳,获得10
17秒前
科研通AI2S应助科研通管家采纳,获得10
17秒前
17秒前
Singularity应助科研通管家采纳,获得10
17秒前
天天快乐应助科研通管家采纳,获得10
17秒前
汉堡包应助科研通管家采纳,获得10
17秒前
在水一方应助科研通管家采纳,获得10
17秒前
jdj发布了新的文献求助10
17秒前
英姑应助科研通管家采纳,获得10
18秒前
18秒前
聪慧豁发布了新的文献求助20
18秒前
南希完成签到 ,获得积分10
19秒前
19秒前
20秒前
十七完成签到 ,获得积分10
20秒前
高分求助中
The Oxford Handbook of Social Cognition (Second Edition, 2024) 1050
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
Chen Hansheng: China’s Last Romantic Revolutionary 500
COSMETIC DERMATOLOGY & SKINCARE PRACTICE 388
Case Research: The Case Writing Process 300
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3141624
求助须知:如何正确求助?哪些是违规求助? 2792563
关于积分的说明 7803506
捐赠科研通 2448811
什么是DOI,文献DOI怎么找? 1302925
科研通“疑难数据库(出版商)”最低求助积分说明 626683
版权声明 601240