A Graph Convolutional Network–Based Method for Chemical-Protein Interaction Extraction: Algorithm Development

计算机科学 判决 依赖关系图 编码 自然语言处理 图形 信息抽取 人工智能 关系抽取 依赖关系(UML) 知识图 生物医学文本挖掘 机器学习 理论计算机科学 文本挖掘 基因 化学 生物化学
作者
Erniu Wang,Fan Wang,Zhihao Yang,Lei Wang,Yin Zhang,Hongfei Lin,Jian Wang
出处
期刊:JMIR medical informatics [JMIR Publications]
卷期号:8 (5): e17643-e17643 被引量:12
标识
DOI:10.2196/17643
摘要

Extracting the interactions between chemicals and proteins from the biomedical literature is important for many biomedical tasks such as drug discovery, medicine precision, and knowledge graph construction. Several computational methods have been proposed for automatic chemical-protein interaction (CPI) extraction. However, the majority of these proposed models cannot effectively learn semantic and syntactic information from complex sentences in biomedical texts.To relieve this problem, we propose a method to effectively encode syntactic information from long text for CPI extraction.Since syntactic information can be captured from dependency graphs, graph convolutional networks (GCNs) have recently drawn increasing attention in natural language processing. To investigate the performance of a GCN on CPI extraction, this paper proposes a novel GCN-based model. The model can effectively capture sequential information and long-range syntactic relations between words by using the dependency structure of input sentences.We evaluated our model on the ChemProt corpus released by BioCreative VI; it achieved an F-score of 65.17%, which is 1.07% higher than that of the state-of-the-art system proposed by Peng et al. As indicated by the significance test (P<.001), the improvement is significant. It indicates that our model is effective in extracting CPIs. The GCN-based model can better capture the semantic and syntactic information of the sentence compared to other models, therefore alleviating the problems associated with the complexity of biomedical literature.Our model can obtain more information from the dependency graph than previously proposed models. Experimental results suggest that it is competitive to state-of-the-art methods and significantly outperforms other methods on the ChemProt corpus, which is the benchmark data set for CPI extraction.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
李健的粉丝团团长应助Noah采纳,获得30
2秒前
科研通AI5应助Noah采纳,获得30
2秒前
华仔应助Noah采纳,获得30
3秒前
可爱的函函应助Noah采纳,获得10
3秒前
上官若男应助Noah采纳,获得20
3秒前
苗条梦玉发布了新的文献求助10
3秒前
星辰大海应助Noah采纳,获得10
3秒前
慕青应助Noah采纳,获得30
3秒前
FashionBoy应助Noah采纳,获得30
3秒前
传奇3应助Noah采纳,获得10
3秒前
wanci应助Noah采纳,获得10
3秒前
ZYT完成签到,获得积分10
3秒前
3秒前
初青酱完成签到 ,获得积分10
4秒前
李爱国应助活力的青枫采纳,获得10
5秒前
风清扬应助Doct采纳,获得10
6秒前
7秒前
张子翀发布了新的文献求助200
9秒前
大媛媛发布了新的文献求助10
9秒前
9秒前
苗条梦玉完成签到,获得积分10
10秒前
666完成签到,获得积分10
10秒前
李爱国应助Hexagram采纳,获得10
11秒前
12秒前
12秒前
外向宛菡发布了新的文献求助10
13秒前
Komorebi完成签到 ,获得积分10
13秒前
郁盈发布了新的文献求助10
13秒前
14秒前
14秒前
15秒前
lbx发布了新的文献求助10
16秒前
芭乐侠完成签到,获得积分10
16秒前
17秒前
ZZ发布了新的文献求助10
17秒前
郁盈完成签到,获得积分10
17秒前
活力的青枫完成签到,获得积分10
17秒前
宇文一发布了新的文献求助10
17秒前
充电宝应助俭朴语柳采纳,获得10
18秒前
19秒前
高分求助中
Picture Books with Same-sex Parented Families: Unintentional Censorship 1000
A new approach to the extrapolation of accelerated life test data 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
Microbiology and Health Benefits of Traditional Alcoholic Beverages 400
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 310
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3979984
求助须知:如何正确求助?哪些是违规求助? 3524121
关于积分的说明 11219921
捐赠科研通 3261562
什么是DOI,文献DOI怎么找? 1800703
邀请新用户注册赠送积分活动 879263
科研通“疑难数据库(出版商)”最低求助积分说明 807232