亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

A Graph Convolutional Network–Based Method for Chemical-Protein Interaction Extraction: Algorithm Development

计算机科学 判决 依赖关系图 编码 自然语言处理 图形 信息抽取 人工智能 关系抽取 依赖关系(UML) 知识图 生物医学文本挖掘 机器学习 理论计算机科学 文本挖掘 基因 化学 生物化学
作者
Erniu Wang,Fan Wang,Zhihao Yang,Lei Wang,Yin Zhang,Hongfei Lin,Jian Wang
出处
期刊:JMIR medical informatics [JMIR Publications]
卷期号:8 (5): e17643-e17643 被引量:12
标识
DOI:10.2196/17643
摘要

Extracting the interactions between chemicals and proteins from the biomedical literature is important for many biomedical tasks such as drug discovery, medicine precision, and knowledge graph construction. Several computational methods have been proposed for automatic chemical-protein interaction (CPI) extraction. However, the majority of these proposed models cannot effectively learn semantic and syntactic information from complex sentences in biomedical texts.To relieve this problem, we propose a method to effectively encode syntactic information from long text for CPI extraction.Since syntactic information can be captured from dependency graphs, graph convolutional networks (GCNs) have recently drawn increasing attention in natural language processing. To investigate the performance of a GCN on CPI extraction, this paper proposes a novel GCN-based model. The model can effectively capture sequential information and long-range syntactic relations between words by using the dependency structure of input sentences.We evaluated our model on the ChemProt corpus released by BioCreative VI; it achieved an F-score of 65.17%, which is 1.07% higher than that of the state-of-the-art system proposed by Peng et al. As indicated by the significance test (P<.001), the improvement is significant. It indicates that our model is effective in extracting CPIs. The GCN-based model can better capture the semantic and syntactic information of the sentence compared to other models, therefore alleviating the problems associated with the complexity of biomedical literature.Our model can obtain more information from the dependency graph than previously proposed models. Experimental results suggest that it is competitive to state-of-the-art methods and significantly outperforms other methods on the ChemProt corpus, which is the benchmark data set for CPI extraction.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
19秒前
29秒前
童严柯发布了新的文献求助10
29秒前
balabala3发布了新的文献求助10
37秒前
38秒前
balabala3完成签到,获得积分10
52秒前
搞对完成签到 ,获得积分10
1分钟前
乐乐应助wuuw采纳,获得10
1分钟前
1分钟前
1分钟前
wuuw发布了新的文献求助10
1分钟前
科研通AI5应助要减肥中蓝采纳,获得10
1分钟前
2分钟前
楚楚完成签到 ,获得积分10
2分钟前
科研通AI5应助要减肥中蓝采纳,获得10
3分钟前
3分钟前
3分钟前
可爱的函函应助yangyangyang采纳,获得10
4分钟前
5分钟前
hh发布了新的文献求助10
5分钟前
hh完成签到,获得积分10
5分钟前
9527应助科研通管家采纳,获得10
6分钟前
sweet完成签到,获得积分10
6分钟前
6分钟前
sweet发布了新的文献求助10
6分钟前
科研通AI5应助要减肥中蓝采纳,获得10
6分钟前
yangyangyang发布了新的文献求助10
6分钟前
医研完成签到 ,获得积分10
6分钟前
yangyangyang完成签到,获得积分20
6分钟前
7分钟前
量子星尘发布了新的文献求助10
7分钟前
7分钟前
科研通AI5应助要减肥中蓝采纳,获得10
7分钟前
冷静初彤完成签到,获得积分10
7分钟前
嘬痰猩猩完成签到 ,获得积分10
7分钟前
7分钟前
Ava应助wgxwgx采纳,获得10
7分钟前
7分钟前
wgxwgx发布了新的文献求助10
7分钟前
wgxwgx完成签到,获得积分10
8分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Acute Mountain Sickness 2000
Handbook of Milkfat Fractionation Technology and Application, by Kerry E. Kaylegian and Robert C. Lindsay, AOCS Press, 1995 1000
A novel angiographic index for predicting the efficacy of drug-coated balloons in small vessels 500
Textbook of Neonatal Resuscitation ® 500
The Affinity Designer Manual - Version 2: A Step-by-Step Beginner's Guide 500
Affinity Designer Essentials: A Complete Guide to Vector Art: Your Ultimate Handbook for High-Quality Vector Graphics 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5065431
求助须知:如何正确求助?哪些是违规求助? 4288045
关于积分的说明 13359600
捐赠科研通 4106806
什么是DOI,文献DOI怎么找? 2248861
邀请新用户注册赠送积分活动 1254372
关于科研通互助平台的介绍 1186085