A Graph Convolutional Network–Based Method for Chemical-Protein Interaction Extraction: Algorithm Development

计算机科学 判决 依赖关系图 编码 自然语言处理 图形 信息抽取 人工智能 关系抽取 依赖关系(UML) 知识图 生物医学文本挖掘 机器学习 理论计算机科学 文本挖掘 基因 化学 生物化学
作者
Erniu Wang,Fan Wang,Zhihao Yang,Lei Wang,Yin Zhang,Hongfei Lin,Jian Wang
出处
期刊:JMIR medical informatics [JMIR Publications Inc.]
卷期号:8 (5): e17643-e17643 被引量:12
标识
DOI:10.2196/17643
摘要

Extracting the interactions between chemicals and proteins from the biomedical literature is important for many biomedical tasks such as drug discovery, medicine precision, and knowledge graph construction. Several computational methods have been proposed for automatic chemical-protein interaction (CPI) extraction. However, the majority of these proposed models cannot effectively learn semantic and syntactic information from complex sentences in biomedical texts.To relieve this problem, we propose a method to effectively encode syntactic information from long text for CPI extraction.Since syntactic information can be captured from dependency graphs, graph convolutional networks (GCNs) have recently drawn increasing attention in natural language processing. To investigate the performance of a GCN on CPI extraction, this paper proposes a novel GCN-based model. The model can effectively capture sequential information and long-range syntactic relations between words by using the dependency structure of input sentences.We evaluated our model on the ChemProt corpus released by BioCreative VI; it achieved an F-score of 65.17%, which is 1.07% higher than that of the state-of-the-art system proposed by Peng et al. As indicated by the significance test (P<.001), the improvement is significant. It indicates that our model is effective in extracting CPIs. The GCN-based model can better capture the semantic and syntactic information of the sentence compared to other models, therefore alleviating the problems associated with the complexity of biomedical literature.Our model can obtain more information from the dependency graph than previously proposed models. Experimental results suggest that it is competitive to state-of-the-art methods and significantly outperforms other methods on the ChemProt corpus, which is the benchmark data set for CPI extraction.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
passion完成签到,获得积分10
刚刚
刚刚
小二郎应助zl12采纳,获得10
刚刚
Orange应助九九采纳,获得10
刚刚
脑洞疼应助科研工作者采纳,获得10
1秒前
王硕硕发布了新的文献求助10
1秒前
1秒前
1秒前
哒哒哒发布了新的文献求助10
2秒前
Hello应助lky采纳,获得10
2秒前
香蕉觅云应助花朝十一采纳,获得10
2秒前
3秒前
123完成签到,获得积分10
3秒前
英俊的铭应助zhzhzh采纳,获得10
3秒前
幸福烤鸡发布了新的文献求助10
3秒前
量子星尘发布了新的文献求助10
3秒前
4秒前
李健应助务实的机器猫采纳,获得10
5秒前
5秒前
5秒前
5秒前
哈皮发布了新的文献求助10
5秒前
6秒前
刘麦子完成签到,获得积分10
6秒前
xiongyh10发布了新的文献求助10
6秒前
6秒前
t东流水完成签到,获得积分10
7秒前
7秒前
7秒前
peng完成签到,获得积分10
7秒前
7秒前
丘比特应助呆萌冷风采纳,获得10
7秒前
好运设计完成签到,获得积分10
8秒前
李健应助aldeheby采纳,获得10
8秒前
领导范儿应助xixi采纳,获得10
8秒前
Chunlan发布了新的文献求助10
9秒前
nisun完成签到,获得积分10
9秒前
9秒前
粗犷的向珊完成签到 ,获得积分10
9秒前
快乐周周关注了科研通微信公众号
9秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Real World Research, 5th Edition 800
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5719256
求助须知:如何正确求助?哪些是违规求助? 5255673
关于积分的说明 15288302
捐赠科研通 4869143
什么是DOI,文献DOI怎么找? 2614653
邀请新用户注册赠送积分活动 1564667
关于科研通互助平台的介绍 1521894