A Graph Convolutional Network–Based Method for Chemical-Protein Interaction Extraction: Algorithm Development

计算机科学 判决 依赖关系图 编码 自然语言处理 图形 信息抽取 人工智能 关系抽取 依赖关系(UML) 知识图 生物医学文本挖掘 机器学习 理论计算机科学 文本挖掘 基因 化学 生物化学
作者
Erniu Wang,Fan Wang,Zhihao Yang,Lei Wang,Yin Zhang,Hongfei Lin,Jian Wang
出处
期刊:JMIR medical informatics [JMIR Publications Inc.]
卷期号:8 (5): e17643-e17643 被引量:12
标识
DOI:10.2196/17643
摘要

Extracting the interactions between chemicals and proteins from the biomedical literature is important for many biomedical tasks such as drug discovery, medicine precision, and knowledge graph construction. Several computational methods have been proposed for automatic chemical-protein interaction (CPI) extraction. However, the majority of these proposed models cannot effectively learn semantic and syntactic information from complex sentences in biomedical texts.To relieve this problem, we propose a method to effectively encode syntactic information from long text for CPI extraction.Since syntactic information can be captured from dependency graphs, graph convolutional networks (GCNs) have recently drawn increasing attention in natural language processing. To investigate the performance of a GCN on CPI extraction, this paper proposes a novel GCN-based model. The model can effectively capture sequential information and long-range syntactic relations between words by using the dependency structure of input sentences.We evaluated our model on the ChemProt corpus released by BioCreative VI; it achieved an F-score of 65.17%, which is 1.07% higher than that of the state-of-the-art system proposed by Peng et al. As indicated by the significance test (P<.001), the improvement is significant. It indicates that our model is effective in extracting CPIs. The GCN-based model can better capture the semantic and syntactic information of the sentence compared to other models, therefore alleviating the problems associated with the complexity of biomedical literature.Our model can obtain more information from the dependency graph than previously proposed models. Experimental results suggest that it is competitive to state-of-the-art methods and significantly outperforms other methods on the ChemProt corpus, which is the benchmark data set for CPI extraction.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
苗佳威完成签到,获得积分10
刚刚
薛乎虚完成签到 ,获得积分10
刚刚
安静一曲完成签到 ,获得积分10
1秒前
不安莺完成签到,获得积分10
4秒前
祈雪发布了新的文献求助10
4秒前
谦让的含海完成签到,获得积分10
5秒前
TTTTREE发布了新的文献求助20
5秒前
6秒前
SciGPT应助科研通管家采纳,获得10
6秒前
华仔应助科研通管家采纳,获得10
6秒前
大个应助科研通管家采纳,获得10
6秒前
赘婿应助科研通管家采纳,获得30
6秒前
我是老大应助科研通管家采纳,获得10
6秒前
阿玖完成签到 ,获得积分10
8秒前
布同完成签到,获得积分10
8秒前
堀江真夏完成签到 ,获得积分10
9秒前
Pauline完成签到 ,获得积分10
10秒前
能干戎完成签到,获得积分10
10秒前
悦耳怜南完成签到,获得积分10
10秒前
小丑鱼儿完成签到 ,获得积分10
11秒前
唐Doctor发布了新的文献求助10
12秒前
molly雨轩完成签到,获得积分10
12秒前
王明阳完成签到 ,获得积分10
12秒前
gcl完成签到,获得积分10
14秒前
Hzml完成签到 ,获得积分10
16秒前
妖精完成签到 ,获得积分10
17秒前
17秒前
18秒前
江哥完成签到,获得积分10
18秒前
mengmenglv完成签到 ,获得积分0
18秒前
xdc完成签到,获得积分20
18秒前
19秒前
Zo完成签到,获得积分10
19秒前
量子星尘发布了新的文献求助10
21秒前
明亮的小懒虫完成签到 ,获得积分10
21秒前
xdc发布了新的文献求助10
22秒前
wl完成签到,获得积分20
22秒前
gf完成签到 ,获得积分10
22秒前
英姑应助唐Doctor采纳,获得10
23秒前
23秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Iron toxicity and hematopoietic cell transplantation: do we understand why iron affects transplant outcome? 2000
List of 1,091 Public Pension Profiles by Region 1021
Teacher Wellbeing: Noticing, Nurturing, Sustaining, and Flourishing in Schools 1000
A Technologist’s Guide to Performing Sleep Studies 500
EEG in Childhood Epilepsy: Initial Presentation & Long-Term Follow-Up 500
Latent Class and Latent Transition Analysis: With Applications in the Social, Behavioral, and Health Sciences 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5482706
求助须知:如何正确求助?哪些是违规求助? 4583446
关于积分的说明 14389578
捐赠科研通 4512683
什么是DOI,文献DOI怎么找? 2473180
邀请新用户注册赠送积分活动 1459251
关于科研通互助平台的介绍 1432861