Modeling ethanol production through gas fermentation: a biothermodynamics and mass transfer-based hybrid model for microbial growth in a large-scale bubble column bioreactor

生物反应器 传质 发酵 生物量(生态学) 乙醇燃料 放大 鼓泡塔反应器 气泡 制浆造纸工业 环境科学 化学 工艺工程 色谱法 食品科学 机械 工程类 生物 物理 农学 有机化学 经典力学 气泡
作者
Eduardo Almeida Benalcázar,Henk Noorman,Rubens Maciel Filho,John A. Posada
出处
期刊:Biotechnology for Biofuels [Springer Nature]
卷期号:13 (1) 被引量:35
标识
DOI:10.1186/s13068-020-01695-y
摘要

Ethanol production through fermentation of gas mixtures containing CO, CO2 and H2 has just started operating at commercial scale. However, quantitative schemes for understanding and predicting productivities, yields, mass transfer rates, gas flow profiles and detailed energy requirements have been lacking in literature; such are invaluable tools for process improvements and better systems design. The present study describes the construction of a hybrid model for simulating ethanol production inside a 700 m3 bubble column bioreactor fed with gas of two possible compositions, i.e., pure CO and a 3:1 mixture of H2 and CO2.Estimations made using the thermodynamics-based black-box model of microbial reactions on substrate threshold concentrations, biomass yields, as well as CO and H2 maximum specific uptake rates agreed reasonably well with data and observations reported in literature. According to the bioreactor simulation, there is a strong dependency of process performance on mass transfer rates. When mass transfer coefficients were estimated using a model developed from oxygen transfer to water, ethanol productivity reached 5.1 g L-1 h-1; when the H2/CO2 mixture is fed to the bioreactor, productivity of CO fermentation was 19% lower. Gas utilization reached 23 and 17% for H2/CO2 and CO fermentations, respectively. If mass transfer coefficients were 100% higher than those estimated, ethanol productivity and gas utilization may reach 9.4 g L-1 h-1 and 38% when feeding the H2/CO2 mixture at the same process conditions. The largest energetic requirements for a complete manufacturing plant were identified for gas compression and ethanol distillation, being higher for CO fermentation due to the production of CO2.The thermodynamics-based black-box model of microbial reactions may be used to quantitatively assess and consolidate the diversity of reported data on CO, CO2 and H2 threshold concentrations, biomass yields, maximum substrate uptake rates, and half-saturation constants for CO and H2 for syngas fermentations by acetogenic bacteria. The maximization of ethanol productivity in the bioreactor may come with a cost: low gas utilization. Exploiting the model flexibility, multi-objective optimizations of bioreactor performance might reveal how process conditions and configurations could be adjusted to guide further process development.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
曾医生发布了新的文献求助10
刚刚
1秒前
深情安青应助超级mxl采纳,获得10
1秒前
ding应助疯大仙外向太清采纳,获得10
1秒前
RTena.发布了新的文献求助10
2秒前
小蘑菇应助飞天817采纳,获得10
3秒前
皇帝的床帘应助ran采纳,获得20
4秒前
5秒前
熊二浪发布了新的文献求助10
5秒前
Tiny发布了新的文献求助10
5秒前
田様应助猪猪hero采纳,获得10
6秒前
飞逝的快乐时光完成签到 ,获得积分10
6秒前
7秒前
7秒前
7秒前
7秒前
科研通AI2S应助科研通管家采纳,获得10
8秒前
小马甲应助科研通管家采纳,获得10
8秒前
李爱国应助科研通管家采纳,获得10
8秒前
Hello应助科研通管家采纳,获得10
8秒前
科研通AI2S应助科研通管家采纳,获得10
8秒前
Lucas应助科研通管家采纳,获得30
8秒前
科研通AI2S应助科研通管家采纳,获得10
8秒前
隐形曼青应助科研通管家采纳,获得30
8秒前
8秒前
9秒前
9秒前
orixero应助大兔子采纳,获得10
9秒前
RTena.完成签到,获得积分10
9秒前
卜天亦发布了新的文献求助10
10秒前
Jasper应助小明采纳,获得10
10秒前
DOG发布了新的文献求助10
10秒前
SciGPT应助aa采纳,获得30
11秒前
WangQian发布了新的文献求助10
11秒前
小二郎应助小何HUHU采纳,获得10
12秒前
ZhaoLiping发布了新的文献求助10
13秒前
LL发布了新的文献求助10
13秒前
Tree完成签到,获得积分10
13秒前
14秒前
海狗发布了新的文献求助10
14秒前
高分求助中
Lire en communiste 1000
Ore genesis in the Zambian Copperbelt with particular reference to the northern sector of the Chambishi basin 800
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 700
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 700
Becoming: An Introduction to Jung's Concept of Individuation 600
Evolution 3rd edition 500
Die Gottesanbeterin: Mantis religiosa: 656 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3170879
求助须知:如何正确求助?哪些是违规求助? 2821852
关于积分的说明 7936730
捐赠科研通 2482297
什么是DOI,文献DOI怎么找? 1322448
科研通“疑难数据库(出版商)”最低求助积分说明 633639
版权声明 602608