A feature-fusion framework of clinical, genomics, and histopathological data for METABRIC breast cancer subtype classification

亚型 支持向量机 乳腺癌 雅卡索引 人工智能 随机森林 人口 模式识别(心理学) 机器学习 计算机科学 医学 癌症 内科学 环境卫生 程序设计语言
作者
Ala’a El-Nabawy,Nashwa El-Bendary,Nahla A. Belal
出处
期刊:Applied Soft Computing [Elsevier]
卷期号:91: 106238-106238 被引量:22
标识
DOI:10.1016/j.asoc.2020.106238
摘要

Breast cancer is the most common cancer type attacking women worldwide. Also, breast cancer has been phenotypically classified into five subtypes. Each subtype group has unique characteristics that demonstrate the heterogeneity present within the breast cancer tumour. In 2012, the American Association for Cancer Research provided a population based molecular integrative clusters for the METABRIC (Molecular Taxonomy of Breast Cancer International Consortium) dataset, resulting in ten subtypes. Previous work on the METABRIC dataset used only gene expression data to figure out the effective genes for each subtype, without applying integration to benefit from all data sources. The objective of this paper is to present a breast cancer subtype classification model that applies feature fusion on the METABRIC datasets, namely clinical, gene expression, Copy Number Aberrations (CNA), Copy Number Variations (CNV), and histopathological images. State-of-the-art machine learning classifiers were applied on different data profiles, including Linear-SVM, Radial-SVM, Random Forests (RF), Ensemble SVM (E-SVM), and Boosting. The highest accuracy achieved for IntClust subtyping was 88.36% using Linear-SVM, applied on the data profile with features fused from the clinical, gene expression, CNA, and CNV datasets, with a Jaccard and Dice scores of 0.802 and 0.8835, respectively. On the other hand, for the Pam50 subtyping, an accuracy of 97.1% was achieved, Jaccard score ranging from 0.9439 to 0.9472, and Dice score of 0.971, using Linear-SVM and E-SVM classifiers, with several data profiles that include features from histopathological images. Conclusively, the significance of our study is to validate that using feature fusion from various METABRIC datasets improves breast cancer subtypes classification performance. Moreover, histopathological images give promising results on Pam50 subtypes, and it is expected to improve the accuracy for IntClust subtyping when applied on a higher population.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
甄的艾你完成签到,获得积分10
1秒前
犹豫战斗机完成签到,获得积分10
1秒前
元锦程完成签到,获得积分0
2秒前
一只蓉馍馍完成签到,获得积分10
4秒前
K13完成签到,获得积分10
4秒前
神无完成签到 ,获得积分10
7秒前
忘忧Aquarius完成签到,获得积分10
7秒前
DJ完成签到,获得积分10
7秒前
sptyzl完成签到 ,获得积分10
7秒前
8秒前
科目三应助科研通管家采纳,获得10
12秒前
12秒前
Jasper应助科研通管家采纳,获得10
12秒前
pcr163应助科研通管家采纳,获得50
13秒前
隐形曼青应助科研通管家采纳,获得10
13秒前
脑洞疼应助科研通管家采纳,获得10
13秒前
琉璃苣应助科研通管家采纳,获得10
13秒前
Hello应助科研通管家采纳,获得30
13秒前
13秒前
思源应助科研通管家采纳,获得10
13秒前
充电宝应助科研通管家采纳,获得10
13秒前
Akim应助科研通管家采纳,获得10
13秒前
薰硝壤应助科研通管家采纳,获得10
13秒前
情怀应助科研通管家采纳,获得10
13秒前
独特乘风完成签到,获得积分10
15秒前
1234完成签到 ,获得积分10
16秒前
科研通AI2S应助TAA66采纳,获得10
17秒前
应俊完成签到 ,获得积分10
19秒前
科研通AI2S应助耿耿儿采纳,获得10
19秒前
xiaowang完成签到 ,获得积分10
21秒前
威威完成签到,获得积分10
21秒前
21秒前
21秒前
豪豪完成签到,获得积分10
25秒前
张一楠发布了新的文献求助10
25秒前
刘五十七发布了新的文献求助10
26秒前
wanci应助more采纳,获得10
27秒前
丫丫完成签到,获得积分10
28秒前
Autin完成签到,获得积分10
31秒前
33秒前
高分求助中
Evolution 10000
ISSN 2159-8274 EISSN 2159-8290 1000
Becoming: An Introduction to Jung's Concept of Individuation 600
Ore genesis in the Zambian Copperbelt with particular reference to the northern sector of the Chambishi basin 500
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3162539
求助须知:如何正确求助?哪些是违规求助? 2813402
关于积分的说明 7900247
捐赠科研通 2472973
什么是DOI,文献DOI怎么找? 1316615
科研通“疑难数据库(出版商)”最低求助积分说明 631375
版权声明 602175