吸附
金属有机骨架
全氟辛酸
化学吸附
X射线光电子能谱
单层
路易斯酸
化学
结合能
化学工程
物理化学
金属
计算化学
无机化学
有机化学
催化作用
物理
工程类
生物化学
核物理学
作者
Yiqiong Yang,Zenghui Zheng,Wenqing Ji,Jingcheng Xu,Xiaodong Zhang
标识
DOI:10.1016/j.jhazmat.2020.122686
摘要
Adsorption performance, interfacial interaction mechanism and contribution of pores concerning PFOA adsorption to Fe-based metal-organic frameworks (MOFs) including Fe-BTC, MIL-100-Fe and MIL-101-Fe are investigated using experiments and computational calculation at molecular level even electronic level. Fe-BTC (418 mg/g) with more Lewis acid sites demonstrates higher adsorption capacity of PFOA in comparison with MIL-100-Fe (349 mg/g) and MIL-101-Fe (370 mg/g). Adsorption isotherms and kinetics indicate presence of monolayer adsorption and chemisorption in adsorption process. The pH dependence of PFOA adsorption to Fe-based MOFs is statistically revealed by experiments and analysis of variance of response surface methodology (RSM). XPS spectra of MOF-PFOA corroborate that decreasing binding energy of Fe2p and increasing binding energy of F1s, suggesting the presence of Lewis acid/base complexing (LAB) and hydrophobic interaction in adsorption process. Differential charge demonstrates that Fe center and benzene of organic ligands are respectively electron acceptor and donor in adsorption process. Electronic level mechanism finds that LAB complexing dominates adsorption process due to highest overlap of electron cloud. Smaller pores such as triangle and pentagonal pores of Fe-based MOFs contribute to the load of PFOA, while larger hexagonal one enable PFOA to enter into cages, as revealed by computational calculation.
科研通智能强力驱动
Strongly Powered by AbleSci AI