计算机科学
模式
变压器
人工智能
融合
融合机制
语音识别
互补性(分子生物学)
情绪识别
视听
可视化
保险丝(电气)
模式识别(心理学)
机器学习
工程类
语言学
哲学
多媒体
电压
社会学
脂质双层融合
生物
电气工程
遗传学
社会科学
作者
Jian Huang,Jianhua Tao,Bin Liu,Zheng Lian,Mingyue Niu
标识
DOI:10.1109/icassp40776.2020.9053762
摘要
Multimodal fusion increases the performance of emotion recognition because of the complementarity of different modalities. Compared with decision level and feature level fusion, model level fusion makes better use of the advantages of deep neural networks. In this work, we utilize the Transformer model to fuse audio-visual modalities on the model level. Specifically, the multi-head attention produces multimodal emotional intermediate representations from common semantic feature space after encoding audio and visual modalities. Meanwhile, it also can learn long-term temporal dependencies with self-attention mechanism effectively. The experiments, on the AVEC 2017 database, shows the superiority of model level fusion than other fusion strategies. Moreover, we combine the Transformer model and LSTM to further improve the performance, which achieves better results than other methods.
科研通智能强力驱动
Strongly Powered by AbleSci AI