已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Feasibility of multi-parametric magnetic resonance imaging combined with machine learning in the assessment of necrosis of osteosarcoma after neoadjuvant chemotherapy: a preliminary study

医学 骨肉瘤 磁共振成像 坏死 放射科 化疗 新辅助治疗 病理 癌症 外科 内科学 乳腺癌
作者
Bingsheng Huang,Jifei Wang,Meili Sun,Xin Chen,Danyang Xu,Zi Ping Li,Jinting Ma,Shi‐Ting Feng,Zhenhua Gao
出处
期刊:BMC Cancer [BioMed Central]
卷期号:20 (1) 被引量:21
标识
DOI:10.1186/s12885-020-06825-1
摘要

Abstract Background Response evaluation of neoadjuvant chemotherapy (NACT) in patients with osteosarcoma is significant for the termination of ineffective treatment, the development of postoperative chemotherapy regimens, and the prediction of prognosis. However, histological response and tumour necrosis rate can currently be evaluated only in resected specimens after NACT. A preoperatively accurate, noninvasive, and reproducible method of response assessment to NACT is required. In this study, the value of multi-parametric magnetic resonance imaging (MRI) combined with machine learning for assessment of tumour necrosis after NACT for osteosarcoma was investigated. Methods Twelve patients with primary osteosarcoma of limbs underwent NACT and received MRI examination before surgery. Postoperative tumour specimens were made corresponding to the transverse image of MRI. One hundred and two tissue samples were obtained and pathologically divided into tumour survival areas (non-cartilaginous and cartilaginous tumour viable areas) and tumour-nonviable areas (non-cartilaginous tumour necrosis areas, post-necrotic tumour collagen areas, and tumour necrotic cystic/haemorrhagic and secondary aneurismal bone cyst areas). The MRI parameters, including standardised apparent diffusion coefficient (ADC) values, signal intensity values of T2-weighted imaging (T2WI) and subtract-enhanced T1-weighted imaging (ST1WI) were used to train machine learning models based on the random forest algorithm. Three classification tasks of distinguishing tumour survival, non-cartilaginous tumour survival, and cartilaginous tumour survival from tumour nonviable were evaluated by five-fold cross-validation. Results For distinguishing non-cartilaginous tumour survival from tumour nonviable, the classifier constructed with ADC achieved an AUC of 0.93, while the classifier with multi-parametric MRI improved to 0.97 ( P = 0.0933). For distinguishing tumour survival from tumour nonviable, the classifier with ADC achieved an AUC of 0.83, while the classifier with multi-parametric MRI improved to 0.90 ( P < 0.05). For distinguishing cartilaginous tumour survival from tumour nonviable, the classifier with ADC achieved an AUC of 0.61, while the classifier with multi-parametric MRI parameters improved to 0.81( P < 0.05). Conclusions The combination of multi-parametric MRI and machine learning significantly improved the discriminating ability of viable cartilaginous tumour components. Our study suggests that this method may provide an objective and accurate basis for NACT response evaluation in osteosarcoma.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
kyfbrahha完成签到 ,获得积分10
刚刚
1秒前
摆渡人发布了新的文献求助10
2秒前
3秒前
4秒前
慕青应助guozizi采纳,获得30
5秒前
李爱国应助漂亮白枫采纳,获得10
5秒前
芯之痕发布了新的文献求助10
8秒前
fly发布了新的文献求助10
8秒前
吴昕昕完成签到,获得积分10
12秒前
guozizi发布了新的文献求助50
13秒前
16秒前
17秒前
梦璃完成签到 ,获得积分10
18秒前
田一点发布了新的文献求助10
22秒前
vin应助guozizi采纳,获得50
22秒前
23秒前
科研学术完成签到,获得积分10
23秒前
张土豆完成签到 ,获得积分10
25秒前
Doki发布了新的文献求助10
25秒前
cyy关闭了cyy文献求助
25秒前
芯之痕发布了新的文献求助100
29秒前
曲寻梅发布了新的文献求助20
30秒前
32秒前
小何HUHU完成签到,获得积分10
32秒前
aaa完成签到 ,获得积分10
32秒前
乐乐应助xiaohuangya采纳,获得10
32秒前
吾皇完成签到 ,获得积分10
34秒前
yyy完成签到 ,获得积分10
35秒前
taotao完成签到,获得积分10
37秒前
39秒前
001完成签到 ,获得积分10
40秒前
沧海云完成签到 ,获得积分10
42秒前
抹茶麻薯发布了新的文献求助10
43秒前
45秒前
君君完成签到 ,获得积分10
48秒前
ky幻影完成签到,获得积分10
48秒前
wangmeiqiong完成签到,获得积分20
49秒前
HAHA完成签到,获得积分10
50秒前
51秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Picture Books with Same-sex Parented Families: Unintentional Censorship 700
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3976583
求助须知:如何正确求助?哪些是违规求助? 3520659
关于积分的说明 11204399
捐赠科研通 3257298
什么是DOI,文献DOI怎么找? 1798683
邀请新用户注册赠送积分活动 877842
科研通“疑难数据库(出版商)”最低求助积分说明 806595