Feasibility of multi-parametric magnetic resonance imaging combined with machine learning in the assessment of necrosis of osteosarcoma after neoadjuvant chemotherapy: a preliminary study

医学 骨肉瘤 磁共振成像 坏死 放射科 化疗 新辅助治疗 病理 癌症 外科 内科学 乳腺癌
作者
Bingsheng Huang,Jifei Wang,Meili Sun,Xin Chen,Danyang Xu,Zi Ping Li,Jinting Ma,Shi‐Ting Feng,Zhenhua Gao
出处
期刊:BMC Cancer [BioMed Central]
卷期号:20 (1) 被引量:21
标识
DOI:10.1186/s12885-020-06825-1
摘要

Abstract Background Response evaluation of neoadjuvant chemotherapy (NACT) in patients with osteosarcoma is significant for the termination of ineffective treatment, the development of postoperative chemotherapy regimens, and the prediction of prognosis. However, histological response and tumour necrosis rate can currently be evaluated only in resected specimens after NACT. A preoperatively accurate, noninvasive, and reproducible method of response assessment to NACT is required. In this study, the value of multi-parametric magnetic resonance imaging (MRI) combined with machine learning for assessment of tumour necrosis after NACT for osteosarcoma was investigated. Methods Twelve patients with primary osteosarcoma of limbs underwent NACT and received MRI examination before surgery. Postoperative tumour specimens were made corresponding to the transverse image of MRI. One hundred and two tissue samples were obtained and pathologically divided into tumour survival areas (non-cartilaginous and cartilaginous tumour viable areas) and tumour-nonviable areas (non-cartilaginous tumour necrosis areas, post-necrotic tumour collagen areas, and tumour necrotic cystic/haemorrhagic and secondary aneurismal bone cyst areas). The MRI parameters, including standardised apparent diffusion coefficient (ADC) values, signal intensity values of T2-weighted imaging (T2WI) and subtract-enhanced T1-weighted imaging (ST1WI) were used to train machine learning models based on the random forest algorithm. Three classification tasks of distinguishing tumour survival, non-cartilaginous tumour survival, and cartilaginous tumour survival from tumour nonviable were evaluated by five-fold cross-validation. Results For distinguishing non-cartilaginous tumour survival from tumour nonviable, the classifier constructed with ADC achieved an AUC of 0.93, while the classifier with multi-parametric MRI improved to 0.97 ( P = 0.0933). For distinguishing tumour survival from tumour nonviable, the classifier with ADC achieved an AUC of 0.83, while the classifier with multi-parametric MRI improved to 0.90 ( P < 0.05). For distinguishing cartilaginous tumour survival from tumour nonviable, the classifier with ADC achieved an AUC of 0.61, while the classifier with multi-parametric MRI parameters improved to 0.81( P < 0.05). Conclusions The combination of multi-parametric MRI and machine learning significantly improved the discriminating ability of viable cartilaginous tumour components. Our study suggests that this method may provide an objective and accurate basis for NACT response evaluation in osteosarcoma.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
mncvjs发布了新的文献求助10
4秒前
搜集达人应助哈哈采纳,获得30
4秒前
今年离开老登了完成签到,获得积分10
4秒前
6S6完成签到,获得积分10
5秒前
量子星尘发布了新的文献求助150
5秒前
耍酷的冷雪完成签到,获得积分10
5秒前
怡然茗茗完成签到 ,获得积分10
5秒前
无聊的惜文完成签到 ,获得积分10
5秒前
Tina完成签到,获得积分10
10秒前
倾听阳光完成签到 ,获得积分10
10秒前
Double_N完成签到,获得积分10
12秒前
14秒前
fantexi113完成签到,获得积分0
14秒前
窦房结完成签到 ,获得积分10
14秒前
玩命的化蛹完成签到,获得积分10
15秒前
水硕完成签到,获得积分10
15秒前
量子星尘发布了新的文献求助150
17秒前
xiaofeixia完成签到 ,获得积分10
18秒前
随便起个名完成签到,获得积分10
20秒前
HH完成签到,获得积分10
20秒前
chris完成签到,获得积分10
20秒前
英俊的铭应助科研通管家采纳,获得10
21秒前
完美世界应助科研通管家采纳,获得150
21秒前
FashionBoy应助科研通管家采纳,获得30
22秒前
科研通AI6应助科研通管家采纳,获得10
22秒前
科研通AI5应助科研通管家采纳,获得10
22秒前
隐形曼青应助科研通管家采纳,获得150
22秒前
乐乐应助科研通管家采纳,获得10
22秒前
美丽人生完成签到 ,获得积分10
22秒前
雨后完成签到 ,获得积分10
24秒前
Augenstern完成签到,获得积分10
24秒前
溆玉碎兰笑完成签到 ,获得积分10
26秒前
李大胖胖完成签到 ,获得积分10
26秒前
Edou完成签到 ,获得积分10
26秒前
2275523154完成签到,获得积分10
27秒前
豆浆来点蒜泥完成签到,获得积分10
28秒前
简单完成签到 ,获得积分10
29秒前
量子星尘发布了新的文献求助150
31秒前
nan完成签到,获得积分10
31秒前
Hh完成签到,获得积分10
33秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Acute Mountain Sickness 2000
A novel angiographic index for predicting the efficacy of drug-coated balloons in small vessels 500
Textbook of Neonatal Resuscitation ® 500
Thomas Hobbes' Mechanical Conception of Nature 500
The Affinity Designer Manual - Version 2: A Step-by-Step Beginner's Guide 500
Affinity Designer Essentials: A Complete Guide to Vector Art: Your Ultimate Handbook for High-Quality Vector Graphics 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5093339
求助须知:如何正确求助?哪些是违规求助? 4306976
关于积分的说明 13417433
捐赠科研通 4133171
什么是DOI,文献DOI怎么找? 2264356
邀请新用户注册赠送积分活动 1268004
关于科研通互助平台的介绍 1203813