Feasibility of multi-parametric magnetic resonance imaging combined with machine learning in the assessment of necrosis of osteosarcoma after neoadjuvant chemotherapy: a preliminary study

医学 骨肉瘤 磁共振成像 坏死 放射科 化疗 新辅助治疗 病理 癌症 外科 内科学 乳腺癌
作者
Bingsheng Huang,Jifei Wang,Meili Sun,Xin Chen,Danyang Xu,Zi Ping Li,Jinting Ma,Shi‐Ting Feng,Zhenhua Gao
出处
期刊:BMC Cancer [Springer Nature]
卷期号:20 (1) 被引量:21
标识
DOI:10.1186/s12885-020-06825-1
摘要

Abstract Background Response evaluation of neoadjuvant chemotherapy (NACT) in patients with osteosarcoma is significant for the termination of ineffective treatment, the development of postoperative chemotherapy regimens, and the prediction of prognosis. However, histological response and tumour necrosis rate can currently be evaluated only in resected specimens after NACT. A preoperatively accurate, noninvasive, and reproducible method of response assessment to NACT is required. In this study, the value of multi-parametric magnetic resonance imaging (MRI) combined with machine learning for assessment of tumour necrosis after NACT for osteosarcoma was investigated. Methods Twelve patients with primary osteosarcoma of limbs underwent NACT and received MRI examination before surgery. Postoperative tumour specimens were made corresponding to the transverse image of MRI. One hundred and two tissue samples were obtained and pathologically divided into tumour survival areas (non-cartilaginous and cartilaginous tumour viable areas) and tumour-nonviable areas (non-cartilaginous tumour necrosis areas, post-necrotic tumour collagen areas, and tumour necrotic cystic/haemorrhagic and secondary aneurismal bone cyst areas). The MRI parameters, including standardised apparent diffusion coefficient (ADC) values, signal intensity values of T2-weighted imaging (T2WI) and subtract-enhanced T1-weighted imaging (ST1WI) were used to train machine learning models based on the random forest algorithm. Three classification tasks of distinguishing tumour survival, non-cartilaginous tumour survival, and cartilaginous tumour survival from tumour nonviable were evaluated by five-fold cross-validation. Results For distinguishing non-cartilaginous tumour survival from tumour nonviable, the classifier constructed with ADC achieved an AUC of 0.93, while the classifier with multi-parametric MRI improved to 0.97 ( P = 0.0933). For distinguishing tumour survival from tumour nonviable, the classifier with ADC achieved an AUC of 0.83, while the classifier with multi-parametric MRI improved to 0.90 ( P < 0.05). For distinguishing cartilaginous tumour survival from tumour nonviable, the classifier with ADC achieved an AUC of 0.61, while the classifier with multi-parametric MRI parameters improved to 0.81( P < 0.05). Conclusions The combination of multi-parametric MRI and machine learning significantly improved the discriminating ability of viable cartilaginous tumour components. Our study suggests that this method may provide an objective and accurate basis for NACT response evaluation in osteosarcoma.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
酷酷海豚完成签到,获得积分10
刚刚
1秒前
1秒前
1秒前
1秒前
2秒前
青青完成签到 ,获得积分10
4秒前
Chan0501发布了新的文献求助10
4秒前
昭昭完成签到,获得积分10
5秒前
SCI发布了新的文献求助10
5秒前
卓然完成签到,获得积分10
5秒前
李来仪发布了新的文献求助10
6秒前
7秒前
菲菲呀完成签到,获得积分10
7秒前
Rrr发布了新的文献求助10
7秒前
9秒前
陌路完成签到,获得积分10
9秒前
善学以致用应助leon采纳,获得30
9秒前
10秒前
斯文败类应助嘻嘻采纳,获得10
10秒前
科研通AI5应助小只bb采纳,获得30
10秒前
yyyy发布了新的文献求助10
10秒前
2023AKY完成签到,获得积分10
12秒前
12秒前
13秒前
13秒前
彭于晏应助惠惠采纳,获得10
13秒前
风魂剑主完成签到,获得积分10
14秒前
yryzst9899发布了新的文献求助10
14秒前
15秒前
飘逸小笼包完成签到,获得积分10
15秒前
科研小郑完成签到,获得积分10
15秒前
CipherSage应助熊boy采纳,获得10
15秒前
XXGG完成签到 ,获得积分10
16秒前
大个应助舒心赛凤采纳,获得10
16秒前
晨曦发布了新的文献求助10
17秒前
17秒前
ff0110完成签到,获得积分10
18秒前
星辰大海应助苹果萧采纳,获得10
18秒前
徐徐完成签到,获得积分10
18秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527849
求助须知:如何正确求助?哪些是违规求助? 3107938
关于积分的说明 9287239
捐赠科研通 2805706
什么是DOI,文献DOI怎么找? 1540033
邀请新用户注册赠送积分活动 716893
科研通“疑难数据库(出版商)”最低求助积分说明 709794