Feasibility of multi-parametric magnetic resonance imaging combined with machine learning in the assessment of necrosis of osteosarcoma after neoadjuvant chemotherapy: a preliminary study

医学 骨肉瘤 磁共振成像 坏死 放射科 化疗 新辅助治疗 病理 癌症 外科 内科学 乳腺癌
作者
Bingsheng Huang,Jifei Wang,Meili Sun,Xin Chen,Danyang Xu,Zi Ping Li,Jinting Ma,Shi‐Ting Feng,Zhenhua Gao
出处
期刊:BMC Cancer [Springer Nature]
卷期号:20 (1) 被引量:21
标识
DOI:10.1186/s12885-020-06825-1
摘要

Abstract Background Response evaluation of neoadjuvant chemotherapy (NACT) in patients with osteosarcoma is significant for the termination of ineffective treatment, the development of postoperative chemotherapy regimens, and the prediction of prognosis. However, histological response and tumour necrosis rate can currently be evaluated only in resected specimens after NACT. A preoperatively accurate, noninvasive, and reproducible method of response assessment to NACT is required. In this study, the value of multi-parametric magnetic resonance imaging (MRI) combined with machine learning for assessment of tumour necrosis after NACT for osteosarcoma was investigated. Methods Twelve patients with primary osteosarcoma of limbs underwent NACT and received MRI examination before surgery. Postoperative tumour specimens were made corresponding to the transverse image of MRI. One hundred and two tissue samples were obtained and pathologically divided into tumour survival areas (non-cartilaginous and cartilaginous tumour viable areas) and tumour-nonviable areas (non-cartilaginous tumour necrosis areas, post-necrotic tumour collagen areas, and tumour necrotic cystic/haemorrhagic and secondary aneurismal bone cyst areas). The MRI parameters, including standardised apparent diffusion coefficient (ADC) values, signal intensity values of T2-weighted imaging (T2WI) and subtract-enhanced T1-weighted imaging (ST1WI) were used to train machine learning models based on the random forest algorithm. Three classification tasks of distinguishing tumour survival, non-cartilaginous tumour survival, and cartilaginous tumour survival from tumour nonviable were evaluated by five-fold cross-validation. Results For distinguishing non-cartilaginous tumour survival from tumour nonviable, the classifier constructed with ADC achieved an AUC of 0.93, while the classifier with multi-parametric MRI improved to 0.97 ( P = 0.0933). For distinguishing tumour survival from tumour nonviable, the classifier with ADC achieved an AUC of 0.83, while the classifier with multi-parametric MRI improved to 0.90 ( P < 0.05). For distinguishing cartilaginous tumour survival from tumour nonviable, the classifier with ADC achieved an AUC of 0.61, while the classifier with multi-parametric MRI parameters improved to 0.81( P < 0.05). Conclusions The combination of multi-parametric MRI and machine learning significantly improved the discriminating ability of viable cartilaginous tumour components. Our study suggests that this method may provide an objective and accurate basis for NACT response evaluation in osteosarcoma.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
我是老大应助DY采纳,获得10
刚刚
刚刚
1秒前
星辰大海应助alex采纳,获得10
1秒前
宇文念真完成签到,获得积分10
2秒前
结实的德地完成签到,获得积分10
2秒前
Seeone完成签到,获得积分10
2秒前
2秒前
2秒前
yznfly应助积极聪健采纳,获得30
2秒前
我是老大应助芋泥抹茶卷采纳,获得30
2秒前
luozhen完成签到,获得积分20
4秒前
ming发布了新的文献求助10
4秒前
4秒前
飞快的雨琴完成签到,获得积分20
4秒前
5秒前
从容安珊完成签到,获得积分10
6秒前
Yep0672完成签到,获得积分10
6秒前
Roy完成签到,获得积分10
6秒前
7秒前
KT完成签到,获得积分10
7秒前
7秒前
爆米花应助年轻的宛采纳,获得10
8秒前
niuya完成签到,获得积分10
8秒前
8秒前
8秒前
9秒前
留胡子的语兰完成签到,获得积分10
9秒前
jjl发布了新的文献求助10
9秒前
嗷呜一口发布了新的文献求助10
9秒前
9秒前
机智碧琴完成签到 ,获得积分10
9秒前
量子星尘发布了新的文献求助10
10秒前
yznfly应助卡布奇诺采纳,获得30
10秒前
WXG完成签到,获得积分10
11秒前
科研通AI6应助hhh采纳,获得30
12秒前
12秒前
jjl完成签到 ,获得积分10
12秒前
12秒前
西梅发布了新的文献求助10
12秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Practical Methods for Aircraft and Rotorcraft Flight Control Design: An Optimization-Based Approach 1000
List of 1,091 Public Pension Profiles by Region 831
The International Law of the Sea (fourth edition) 800
A Guide to Genetic Counseling, 3rd Edition 500
Synthesis and properties of compounds of the type A (III) B2 (VI) X4 (VI), A (III) B4 (V) X7 (VI), and A3 (III) B4 (V) X9 (VI) 500
Carbon black : production, properties, and applications. Ch. 4 in Marsh H 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5414563
求助须知:如何正确求助?哪些是违规求助? 4531551
关于积分的说明 14128768
捐赠科研通 4446914
什么是DOI,文献DOI怎么找? 2439545
邀请新用户注册赠送积分活动 1431581
关于科研通互助平台的介绍 1409276