CEFL: Online Admission Control, Data Scheduling, and Accuracy Tuning for Cost-Efficient Federated Learning Across Edge Nodes

计算机科学 云计算 Lyapunov优化 分布式计算 边缘计算 边缘设备 调度(生产过程) GSM演进的增强数据速率 架空(工程) 服务器 强化学习 数据中心 计算机网络 人工智能 操作系统 经济 李雅普诺夫指数 Lyapunov重新设计 混乱的 运营管理
作者
Zhi Zhou,Song Yang,Lingjun Pu,Shuai Yu
出处
期刊:IEEE Internet of Things Journal [Institute of Electrical and Electronics Engineers]
卷期号:7 (10): 9341-9356 被引量:74
标识
DOI:10.1109/jiot.2020.2984332
摘要

With the proliferation of Internet of Things (IoT), zillions of bytes of data are generated at the network edge, incurring an urgent need to push the frontiers of artificial intelligence (AI) to network edge so as to fully unleash the potential of the IoT big data. To materialize such a vision which is known as edge intelligence, federated learning is emerging as a promising solution to enable edge nodes to collaboratively learn a shared model in a privacy-preserving and communication-efficient manner, by keeping the data at the edge nodes. While pilot efforts on federated learning have mostly focused on reducing the communication overhead, the computation efficiency of those resource-constrained edge nodes has been largely overlooked. To bridge this gap, in this article, we investigate how to coordinate the edge and the cloud to optimize the system-wide cost efficiency of federated learning. Leveraging the Lyapunov optimization theory, we design and analyze a cost-efficient optimization framework CEFL to make online yet near-optimal control decisions on admission control, load balancing, data scheduling, and accuracy tuning for the dynamically arrived training data samples, reducing both computation and communication cost. In particular, our control framework CEFL can be flexibly extended to incorporate various design choices and practical requirements of federated learning, such as exploiting the cheaper cloud resource for model training with better cost efficiency yet still facilitating on-demand privacy preservation. Via both rigorous theoretical analysis and extensive trace-driven evaluations, we verify the cost efficiency of our proposed CEFL framework.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
1秒前
1秒前
2秒前
瑶瑶完成签到,获得积分10
2秒前
3秒前
3秒前
量子星尘发布了新的文献求助10
3秒前
深情安青应助科研通管家采纳,获得10
3秒前
大模型应助科研通管家采纳,获得10
3秒前
科研通AI6应助科研通管家采纳,获得10
3秒前
1111应助科研通管家采纳,获得10
3秒前
情怀应助科研通管家采纳,获得10
3秒前
上官若男应助科研通管家采纳,获得10
3秒前
3秒前
1111应助科研通管家采纳,获得10
3秒前
搜集达人应助科研通管家采纳,获得10
4秒前
wanci应助科研通管家采纳,获得10
4秒前
思源应助科研通管家采纳,获得10
4秒前
脑洞疼应助科研通管家采纳,获得10
4秒前
顾矜应助科研通管家采纳,获得10
4秒前
雨中小王应助科研通管家采纳,获得10
4秒前
脑洞疼应助科研通管家采纳,获得10
4秒前
浮游应助科研通管家采纳,获得10
4秒前
nn应助科研通管家采纳,获得10
4秒前
4秒前
nn应助科研通管家采纳,获得10
4秒前
Akim应助科研通管家采纳,获得10
4秒前
完美世界应助科研通管家采纳,获得20
4秒前
4秒前
beichuanheqi发布了新的文献求助10
4秒前
jjyna发布了新的文献求助10
5秒前
Go发布了新的文献求助10
5秒前
6秒前
Yoona发布了新的文献求助10
6秒前
俏皮的邴发布了新的文献求助10
6秒前
7秒前
8秒前
温暖小霸王应助优美橘子采纳,获得10
8秒前
st发布了新的文献求助10
9秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Agriculture and Food Systems Third Edition 2000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 临床微生物学程序手册,多卷,第5版 2000
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] | NHBS Field Guides & Natural History 1500
The Victim–Offender Overlap During the Global Pandemic: A Comparative Study Across Western and Non-Western Countries 1000
King Tyrant 720
T/CIET 1631—2025《构网型柔性直流输电技术应用指南》 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5594359
求助须知:如何正确求助?哪些是违规求助? 4680082
关于积分的说明 14812808
捐赠科研通 4646997
什么是DOI,文献DOI怎么找? 2534901
邀请新用户注册赠送积分活动 1502862
关于科研通互助平台的介绍 1469514