Land-cover classification with high-resolution remote sensing images using transferable deep models

计算机科学 土地覆盖 遥感 高分辨率 环境科学 地质学 土地利用 封面(代数) 机械工程 工程类 土木工程
作者
Xinyi Tong,Gui-Song Xia,Qikai Lu,Michael K. Ng,Shengyang Li,Shucheng You,Liangpei Zhang
出处
期刊:Remote Sensing of Environment [Elsevier]
卷期号:237: 111322-111322 被引量:611
标识
DOI:10.1016/j.rse.2019.111322
摘要

In recent years, large amount of high spatial-resolution remote sensing (HRRS) images are available for land-cover mapping. However, due to the complex information brought by the increased spatial resolution and the data disturbances caused by different conditions of image acquisition, it is often difficult to find an efficient method for achieving accurate land-cover classification with high-resolution and heterogeneous remote sensing images. In this paper, we propose a scheme to apply deep model obtained from labeled land-cover dataset to classify unlabeled HRRS images. The main idea is to rely on deep neural networks for presenting the contextual information contained in different types of land-covers and propose a pseudo-labeling and sample selection scheme for improving the transferability of deep models. More precisely, a deep Convolutional Neural Networks (CNNs) is first pre-trained with a well-annotated land-cover dataset, referred to as the source data. Then, given a target image with no labels, the pre-trained CNN model is utilized to classify the image in a patch-wise manner. The patches with high confidence are assigned with pseudo-labels and employed as the queries to retrieve related samples from the source data. The pseudo-labels confirmed with the retrieved results are regarded as supervised information for fine-tuning the pre-trained deep model. To obtain a pixel-wise land-cover classification with the target image, we rely on the fine-tuned CNN and develop a hybrid classification by combining patch-wise classification and hierarchical segmentation. In addition, we create a large-scale land-cover dataset containing 150 Gaofen-2 satellite images for CNN pre-training. Experiments on multi-source HRRS images, including Gaofen-2, Gaofen-1, Jilin-1, Ziyuan-3, Sentinel-2A, and Google Earth platform data, show encouraging results and demonstrate the applicability of the proposed scheme to land-cover classification with multi-source HRRS images.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
无花果应助空曲采纳,获得10
1秒前
闪闪发光发布了新的文献求助10
2秒前
万能图书馆应助FAN采纳,获得10
2秒前
000完成签到 ,获得积分10
3秒前
CodeCraft应助木马采纳,获得10
4秒前
leolee完成签到 ,获得积分10
6秒前
10秒前
10秒前
11秒前
传奇3应助清脆大米采纳,获得10
14秒前
15秒前
派大星发布了新的文献求助10
15秒前
嘻嘻发布了新的文献求助10
16秒前
yinan发布了新的文献求助10
16秒前
sun发布了新的文献求助10
17秒前
19秒前
陈锦鲤完成签到 ,获得积分10
19秒前
小不遛w完成签到,获得积分10
19秒前
与我常在完成签到,获得积分20
20秒前
leolee完成签到 ,获得积分10
20秒前
西瓜完成签到,获得积分10
21秒前
21秒前
汉堡包应助嘻嘻嘻采纳,获得10
22秒前
Schiller应助科研通管家采纳,获得10
23秒前
Ava应助科研通管家采纳,获得10
23秒前
CipherSage应助1QA123采纳,获得10
23秒前
8R60d8应助科研通管家采纳,获得10
23秒前
华仔应助科研通管家采纳,获得10
23秒前
23秒前
23秒前
科研通AI2S应助科研通管家采纳,获得10
23秒前
小王应助科研通管家采纳,获得30
23秒前
CodeCraft应助科研通管家采纳,获得10
23秒前
搜集达人应助科研通管家采纳,获得10
23秒前
jeniwu完成签到 ,获得积分20
23秒前
阿童木发布了新的文献求助10
24秒前
豆豆发布了新的文献求助10
25秒前
jeniwu发布了新的文献求助10
26秒前
小蘑菇应助风中的老九采纳,获得10
27秒前
宁做我完成签到,获得积分10
28秒前
高分求助中
Evolution 10000
Sustainability in Tides Chemistry 2800
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
Foreign Policy of the French Second Empire: A Bibliography 500
Chen Hansheng: China’s Last Romantic Revolutionary 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3146344
求助须知:如何正确求助?哪些是违规求助? 2797778
关于积分的说明 7825411
捐赠科研通 2454118
什么是DOI,文献DOI怎么找? 1306100
科研通“疑难数据库(出版商)”最低求助积分说明 627638
版权声明 601503