Land-cover classification with high-resolution remote sensing images using transferable deep models

计算机科学 土地覆盖 卷积神经网络 遥感 人工智能 可转让性 模式识别(心理学) 上下文图像分类 分割 深度学习 图像分辨率 像素 土地利用 数据挖掘 封面(代数) 图像(数学) 机器学习 地理 土木工程 工程类 机械工程 罗伊特
作者
Xinyi Tong,Gui-Song Xia,Qikai Lu,Huanfeng Shen,Shengyang Li,Shucheng You,Liangpei Zhang
出处
期刊:Remote Sensing of Environment [Elsevier]
卷期号:237: 111322-111322 被引量:778
标识
DOI:10.1016/j.rse.2019.111322
摘要

In recent years, large amount of high spatial-resolution remote sensing (HRRS) images are available for land-cover mapping. However, due to the complex information brought by the increased spatial resolution and the data disturbances caused by different conditions of image acquisition, it is often difficult to find an efficient method for achieving accurate land-cover classification with high-resolution and heterogeneous remote sensing images. In this paper, we propose a scheme to apply deep model obtained from labeled land-cover dataset to classify unlabeled HRRS images. The main idea is to rely on deep neural networks for presenting the contextual information contained in different types of land-covers and propose a pseudo-labeling and sample selection scheme for improving the transferability of deep models. More precisely, a deep Convolutional Neural Networks (CNNs) is first pre-trained with a well-annotated land-cover dataset, referred to as the source data. Then, given a target image with no labels, the pre-trained CNN model is utilized to classify the image in a patch-wise manner. The patches with high confidence are assigned with pseudo-labels and employed as the queries to retrieve related samples from the source data. The pseudo-labels confirmed with the retrieved results are regarded as supervised information for fine-tuning the pre-trained deep model. To obtain a pixel-wise land-cover classification with the target image, we rely on the fine-tuned CNN and develop a hybrid classification by combining patch-wise classification and hierarchical segmentation. In addition, we create a large-scale land-cover dataset containing 150 Gaofen-2 satellite images for CNN pre-training. Experiments on multi-source HRRS images, including Gaofen-2, Gaofen-1, Jilin-1, Ziyuan-3, Sentinel-2A, and Google Earth platform data, show encouraging results and demonstrate the applicability of the proposed scheme to land-cover classification with multi-source HRRS images.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
orange发布了新的文献求助10
刚刚
李联洪发布了新的文献求助10
刚刚
1秒前
zj发布了新的文献求助10
2秒前
orange完成签到,获得积分10
4秒前
snowman完成签到 ,获得积分10
6秒前
7秒前
zxm完成签到,获得积分10
7秒前
8秒前
ni完成签到 ,获得积分10
8秒前
张nmky发布了新的文献求助30
9秒前
Orange应助陈娜娜采纳,获得10
10秒前
琳666完成签到,获得积分10
10秒前
小马甲应助紫色奶萨采纳,获得10
11秒前
Jared应助LuckyM采纳,获得10
11秒前
niNe3YUE应助霸气剑通采纳,获得10
11秒前
12秒前
12秒前
12秒前
斯文败类应助积极的夏天采纳,获得10
14秒前
浮游应助小山峰2290采纳,获得10
14秒前
15秒前
SJJ应助研友_ngX12Z采纳,获得10
16秒前
aurora发布了新的文献求助10
17秒前
王先生完成签到 ,获得积分10
17秒前
Hrx发布了新的文献求助50
18秒前
19秒前
20秒前
小宝贝啥也不懂完成签到,获得积分10
20秒前
合成研究菜鸟完成签到,获得积分10
22秒前
22秒前
嘿嘿发布了新的文献求助10
22秒前
23秒前
23秒前
24秒前
大个应助444采纳,获得30
25秒前
25秒前
马超完成签到,获得积分10
25秒前
26秒前
慈祥的鑫发布了新的文献求助10
26秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1601
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 800
Biology of the Reptilia. Volume 21. Morphology I. The Skull and Appendicular Locomotor Apparatus of Lepidosauria 620
A Guide to Genetic Counseling, 3rd Edition 500
Laryngeal Mask Anesthesia: Principles and Practice. 2nd ed 500
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5557364
求助须知:如何正确求助?哪些是违规求助? 4642491
关于积分的说明 14668208
捐赠科研通 4583880
什么是DOI,文献DOI怎么找? 2514433
邀请新用户注册赠送积分活动 1488796
关于科研通互助平台的介绍 1459413