丝素
脚手架
矿化(土壤科学)
生物医学工程
材料科学
模拟体液
间充质干细胞
组织工程
生物矿化
复合数
纳米技术
涂层
化学
丝绸
化学工程
复合材料
扫描电子显微镜
细胞生物学
有机化学
工程类
生物
氮气
医学
作者
Yun-Fei Shao,Xiangcheng Qing,Yizhong Peng,Hui Wang,Zengwu Shao,Ke‐Qin Zhang
标识
DOI:10.1016/j.colsurfb.2020.111401
摘要
Three-dimensional (3D) porous hydroxyapatite/silk fibroin (HA/SF) composite scaffolds with good mechanical and biological performance, could provide a good cellular survival microenvironment for bone repair. However, coating HA efficiently and uniformly on SF scaffolds remains a challenge. In this study, the effects of microwave-assisted technology and biomineralization methods on the nanostructure, chemical composition and deposition efficiency of HA coating have been comparatively analyzed. Furthermore, the mechanical performance of the prepared 3D scaffolds was evaluated, and rat bone marrow mesenchymal stem cells were seeded on the 3D scaffolds to investigate their cytocompatibility and osteogenic differentiation capacities. The results indicate that microwave-assisted technology could improve the HA deposition efficiency to enhance the compressive strengths of 3D HA/SF scaffolds. Especially, when microwave-assisted technology is introduced in simulated body fluid mineralization process, the obtained 3D composite scaffold could trigger the best cellular response, including promoting cell adhesion, spreading, proliferation and osteogenic differentiation. This study may provide a promising strategy for constructing 3D porous scaffolds with excellent mechanical and biological performance for bone tissue engineering.
科研通智能强力驱动
Strongly Powered by AbleSci AI