PENet—a scalable deep-learning model for automated diagnosis of pulmonary embolism using volumetric CT imaging

肺栓塞 医学诊断 人工智能 深度学习 卷积神经网络 急诊分诊台 金标准(测试) 医学 计算机科学 概化理论 人口 放射科 医学影像学 机器学习 急诊医学 外科 统计 数学 环境卫生
作者
Shih-Cheng Huang,Tanay Kothari,Imon Banerjee,Chris Chute,Robyn L. Ball,Norah Borus,Andrew Yi-Ann Huang,Bhavik N. Patel,Pranav Rajpurkar,Jeremy Irvin,Jared Dunnmon,Joseph Bledsoe,Katie Shpanskaya,Abhay Dhaliwal,Roham T. Zamanian,Andrew Y. Ng,Matthew P. Lungren
出处
期刊:npj digital medicine [Springer Nature]
卷期号:3 (1) 被引量:106
标识
DOI:10.1038/s41746-020-0266-y
摘要

Abstract Pulmonary embolism (PE) is a life-threatening clinical problem and computed tomography pulmonary angiography (CTPA) is the gold standard for diagnosis. Prompt diagnosis and immediate treatment are critical to avoid high morbidity and mortality rates, yet PE remains among the diagnoses most frequently missed or delayed. In this study, we developed a deep learning model—PENet, to automatically detect PE on volumetric CTPA scans as an end-to-end solution for this purpose. The PENet is a 77-layer 3D convolutional neural network (CNN) pretrained on the Kinetics-600 dataset and fine-tuned on a retrospective CTPA dataset collected from a single academic institution. The PENet model performance was evaluated in detecting PE on data from two different institutions: one as a hold-out dataset from the same institution as the training data and a second collected from an external institution to evaluate model generalizability to an unrelated population dataset. PENet achieved an AUROC of 0.84 [0.82–0.87] on detecting PE on the hold out internal test set and 0.85 [0.81–0.88] on external dataset. PENet also outperformed current state-of-the-art 3D CNN models. The results represent successful application of an end-to-end 3D CNN model for the complex task of PE diagnosis without requiring computationally intensive and time consuming preprocessing and demonstrates sustained performance on data from an external institution. Our model could be applied as a triage tool to automatically identify clinically important PEs allowing for prioritization for diagnostic radiology interpretation and improved care pathways via more efficient diagnosis.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
徐冉发布了新的文献求助10
刚刚
bubble完成签到,获得积分10
刚刚
1秒前
1秒前
1秒前
明理的小甜瓜完成签到,获得积分10
1秒前
婉莹完成签到 ,获得积分0
2秒前
搞科研的Yatoro完成签到,获得积分20
2秒前
昔时旧日完成签到,获得积分10
3秒前
4秒前
4秒前
idiot完成签到,获得积分10
4秒前
signal发布了新的文献求助10
5秒前
白开水完成签到,获得积分10
5秒前
顺心冰之完成签到,获得积分10
5秒前
6秒前
阿布与小佛完成签到 ,获得积分10
6秒前
natsu401完成签到 ,获得积分10
7秒前
涓涓溪水完成签到,获得积分10
7秒前
idiot发布了新的文献求助10
7秒前
白茶的雪完成签到,获得积分10
7秒前
谨慎雨双完成签到,获得积分20
7秒前
75986686完成签到,获得积分10
8秒前
attilio完成签到,获得积分10
8秒前
goodhonghong完成签到,获得积分10
8秒前
Cylair发布了新的文献求助10
8秒前
咖飞完成签到,获得积分10
9秒前
TheDing完成签到,获得积分10
9秒前
李爱国应助欢呼天奇采纳,获得30
10秒前
yemuan发布了新的文献求助10
10秒前
秋秋完成签到,获得积分10
10秒前
香蕉觅云应助756333725采纳,获得10
11秒前
11秒前
铁柱xh完成签到 ,获得积分10
11秒前
11秒前
12秒前
baihao821720完成签到 ,获得积分10
12秒前
冰刀完成签到,获得积分10
12秒前
科研工完成签到,获得积分10
12秒前
12秒前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2500
Healthcare Finance: Modern Financial Analysis for Accelerating Biomedical Innovation 2000
Applications of Emerging Nanomaterials and Nanotechnology 1111
Agaricales of New Zealand 1: Pluteaceae - Entolomataceae 1040
Les Mantodea de Guyane Insecta, Polyneoptera 1000
Neuromuscular and Electrodiagnostic Medicine Board Review 700
지식생태학: 생태학, 죽은 지식을 깨우다 600
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 纳米技术 内科学 物理 化学工程 计算机科学 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 电极
热门帖子
关注 科研通微信公众号,转发送积分 3467055
求助须知:如何正确求助?哪些是违规求助? 3059848
关于积分的说明 9068562
捐赠科研通 2750260
什么是DOI,文献DOI怎么找? 1509176
科研通“疑难数据库(出版商)”最低求助积分说明 697150
邀请新用户注册赠送积分活动 697064