PENet—a scalable deep-learning model for automated diagnosis of pulmonary embolism using volumetric CT imaging

肺栓塞 医学诊断 人工智能 深度学习 卷积神经网络 急诊分诊台 金标准(测试) 医学 计算机科学 概化理论 人口 放射科 医学影像学 机器学习 急诊医学 外科 统计 环境卫生 数学
作者
Shih-Cheng Huang,Tanay Kothari,Imon Banerjee,Chris Chute,Robyn L. Ball,Norah Borus,Andrew Yi-Ann Huang,Bhavik N. Patel,Pranav Rajpurkar,Jeremy Irvin,Jared Dunnmon,Joseph Bledsoe,Katie Shpanskaya,Abhay Dhaliwal,Roham T. Zamanian,Andrew Y. Ng,Matthew P. Lungren
出处
期刊:npj digital medicine [Springer Nature]
卷期号:3 (1) 被引量:106
标识
DOI:10.1038/s41746-020-0266-y
摘要

Abstract Pulmonary embolism (PE) is a life-threatening clinical problem and computed tomography pulmonary angiography (CTPA) is the gold standard for diagnosis. Prompt diagnosis and immediate treatment are critical to avoid high morbidity and mortality rates, yet PE remains among the diagnoses most frequently missed or delayed. In this study, we developed a deep learning model—PENet, to automatically detect PE on volumetric CTPA scans as an end-to-end solution for this purpose. The PENet is a 77-layer 3D convolutional neural network (CNN) pretrained on the Kinetics-600 dataset and fine-tuned on a retrospective CTPA dataset collected from a single academic institution. The PENet model performance was evaluated in detecting PE on data from two different institutions: one as a hold-out dataset from the same institution as the training data and a second collected from an external institution to evaluate model generalizability to an unrelated population dataset. PENet achieved an AUROC of 0.84 [0.82–0.87] on detecting PE on the hold out internal test set and 0.85 [0.81–0.88] on external dataset. PENet also outperformed current state-of-the-art 3D CNN models. The results represent successful application of an end-to-end 3D CNN model for the complex task of PE diagnosis without requiring computationally intensive and time consuming preprocessing and demonstrates sustained performance on data from an external institution. Our model could be applied as a triage tool to automatically identify clinically important PEs allowing for prioritization for diagnostic radiology interpretation and improved care pathways via more efficient diagnosis.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
bkagyin应助xxxx采纳,获得10
刚刚
1秒前
xiaomeng发布了新的文献求助10
1秒前
xianyuerkyt完成签到 ,获得积分10
1秒前
1秒前
1秒前
迪琛完成签到,获得积分20
2秒前
直率芮完成签到,获得积分10
2秒前
酷波er应助Robin采纳,获得10
4秒前
小马甲应助季末默相依采纳,获得10
5秒前
7秒前
小蘑菇应助单薄的忆枫采纳,获得10
7秒前
成熟稳重痴情完成签到,获得积分10
8秒前
8秒前
8秒前
Gu发布了新的文献求助10
10秒前
研友_ZzrWKZ完成签到 ,获得积分10
13秒前
yy完成签到,获得积分20
13秒前
杨家欢完成签到,获得积分10
15秒前
俏皮的冰绿完成签到,获得积分10
15秒前
彭于晏应助xgx984采纳,获得10
16秒前
直率闭月完成签到,获得积分10
17秒前
打打应助11111采纳,获得10
18秒前
18秒前
18秒前
随风飘荡121完成签到,获得积分10
19秒前
19秒前
吐泡泡的奇异果完成签到,获得积分10
20秒前
小马甲应助丁的采纳,获得10
20秒前
20秒前
内向的飞松完成签到,获得积分10
22秒前
zzqx发布了新的文献求助10
23秒前
jscr完成签到,获得积分10
25秒前
666发布了新的文献求助10
25秒前
烟花应助岩追研采纳,获得10
26秒前
小蘑菇应助yeeee采纳,获得10
26秒前
花痴的梦蕊完成签到,获得积分10
26秒前
飞飞发布了新的文献求助10
27秒前
27秒前
首席或雪月完成签到,获得积分10
27秒前
高分求助中
Sustainability in Tides Chemistry 1500
TM 5-855-1(Fundamentals of protective design for conventional weapons) 1000
Threaded Harmony: A Sustainable Approach to Fashion 799
Livre et militantisme : La Cité éditeur 1958-1967 500
Retention of title in secured transactions law from a creditor's perspective: A comparative analysis of selected (non-)functional approaches 500
"Sixth plenary session of the Eighth Central Committee of the Communist Party of China" 400
Introduction to Modern Controls, with illustrations in MATLAB and Python 310
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3057090
求助须知:如何正确求助?哪些是违规求助? 2713644
关于积分的说明 7436720
捐赠科研通 2358721
什么是DOI,文献DOI怎么找? 1249510
科研通“疑难数据库(出版商)”最低求助积分说明 607166
版权声明 596314