An Ensembled SVM Based Approach for Predicting Adverse Drug Reactions

支持向量机 计算机科学 药物反应 训练集 核(代数) 机器学习 人工智能 集合(抽象数据类型) 药品 数据挖掘 数学 医学 药理学 组合数学 程序设计语言
作者
Pratik Joshi,V. Masilamani,Raj Ramesh
出处
期刊:Current Bioinformatics [Bentham Science Publishers]
卷期号:16 (3): 422-432 被引量:21
标识
DOI:10.2174/1574893615999200707141420
摘要

Background: Preventing adverse drug reactions (ADRs) is imperative for the safety of the people. The problem of under-reporting the ADRs has been prevalent across the world, making it difficult to develop the prediction models, which are unbiased. As a result, most of the models are skewed to the negative samples leading to high accuracy but poor performance in other metrics such as precision, recall, F1 score, and AUROC score. Objective: In this work, we have proposed a novel way of predicting the ADRs by balancing the dataset. Method: The whole data set has been partitioned into balanced smaller data sets. SVMs with optimal kernel have been learned using each of the balanced data sets and the prediction of given ADR for the given drug has been obtained by voting from the ensembled optimal SVMs learned. Results: We have found that results are encouraging and comparable with the competing methods in the literature and obtained the average sensitivity of 0.97 for all the ADRs. The model has been interpreted and explained with SHAP values by various plots. Conclusion: A novel way of predicting ADRs by balancing the dataset has been proposed thereby reducing the effect of unbalanced datasets.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
星河长明完成签到,获得积分10
刚刚
林海发布了新的文献求助10
刚刚
杳鸢应助辛勤太阳采纳,获得10
刚刚
酷波er应助亦之采纳,获得10
1秒前
1秒前
白桃枝完成签到,获得积分10
1秒前
2秒前
Crystal发布了新的文献求助10
2秒前
2秒前
3秒前
4秒前
李田田发布了新的文献求助10
5秒前
SciGPT应助lxy采纳,获得10
5秒前
好运连连完成签到 ,获得积分10
5秒前
十四发布了新的文献求助10
6秒前
7秒前
8秒前
之风百度完成签到 ,获得积分10
8秒前
艾琳克斯完成签到 ,获得积分10
9秒前
9秒前
yu发布了新的文献求助10
9秒前
10秒前
10秒前
10秒前
10秒前
赘婿应助xuhan采纳,获得10
11秒前
叶问发布了新的文献求助10
11秒前
Owen应助张豪杰采纳,获得10
12秒前
13秒前
Akim应助爱笑的凡之采纳,获得10
14秒前
14秒前
14秒前
猪猪hero发布了新的文献求助10
15秒前
英俊的铭应助科研通管家采纳,获得10
16秒前
16秒前
脑洞疼应助科研通管家采纳,获得10
16秒前
猫沫沫829发布了新的文献求助10
16秒前
在水一方应助科研通管家采纳,获得10
16秒前
16秒前
wanci应助科研通管家采纳,获得10
16秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
T/CIET 1202-2025 可吸收再生氧化纤维素止血材料 500
Comparison of adverse drug reactions of heparin and its derivates in the European Economic Area based on data from EudraVigilance between 2017 and 2021 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3952150
求助须知:如何正确求助?哪些是违规求助? 3497551
关于积分的说明 11088037
捐赠科研通 3228178
什么是DOI,文献DOI怎么找? 1784700
邀请新用户注册赠送积分活动 868855
科研通“疑难数据库(出版商)”最低求助积分说明 801230