Early Prediction of Response to Neoadjuvant Chemotherapy in Breast Cancer Sonography Using Siamese Convolutional Neural Networks

学习迁移 深度学习 乳腺癌 卷积神经网络 乳腺超声检查 模式识别(心理学) 人工神经网络 逻辑回归 先验与后验 接收机工作特性 机器学习 医学 计算机科学 癌症 乳腺摄影术 内科学 人工智能 哲学 认识论
作者
Michał Byra,Katarzyna Dobruch‐Sobczak,Ziemowit Klimonda,Hanna Piotrzkowska‐Wróblewska,Jerzy Litniewski
出处
期刊:IEEE Journal of Biomedical and Health Informatics [Institute of Electrical and Electronics Engineers]
卷期号:25 (3): 797-805 被引量:58
标识
DOI:10.1109/jbhi.2020.3008040
摘要

Early prediction of response to neoadjuvant chemotherapy (NAC) in breast cancer is crucial for guiding therapy decisions. In this work, we propose a deep learning based approach for the early NAC response prediction in ultrasound (US) imaging. We used transfer learning with deep convolutional neural networks (CNNs) to develop the response prediction models. The usefulness of two transfer learning techniques was examined. First, a CNN pre-trained on the ImageNet dataset was utilized. Second, we applied double transfer learning, the CNN pre-trained on the ImageNet dataset was additionally fine-tuned with breast mass US images to differentiate malignant and benign lesions. Two prediction tasks were investigated. First, a L1 regularized logistic regression prediction model was developed based on generic neural features extracted from US images collected before the chemotherapy (a priori prediction). Second, Siamese CNNs were used to quantify differences between US images collected before the treatment and after the first and second course of NAC. The proposed methods were evaluated using US data collected from 39 tumors. The better performing deep learning models achieved areas under the receiver operating characteristic curve of 0.797 and 0.847 in the case of the a priori prediction and the Siamese model, respectively. The proposed approach was compared with a method based on handcrafted morphological features. Our study presents the feasibility of using transfer learning with CNNs for the NAC response prediction in US imaging.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
螺丝老人发布了新的文献求助10
刚刚
机灵飞珍完成签到 ,获得积分10
1秒前
周星星完成签到,获得积分10
1秒前
小兔子乖乖完成签到 ,获得积分10
1秒前
桐桐应助小宝采纳,获得10
1秒前
FashionBoy应助Wangchenghan采纳,获得10
1秒前
八月宁静完成签到,获得积分10
1秒前
2秒前
zhgj完成签到,获得积分10
3秒前
3秒前
ddd发布了新的文献求助10
3秒前
3秒前
跳跃火车发布了新的文献求助10
3秒前
4秒前
时光轴完成签到,获得积分10
5秒前
踏实青槐完成签到,获得积分10
5秒前
量子星尘发布了新的文献求助10
6秒前
jnum1完成签到,获得积分10
6秒前
7秒前
7秒前
7秒前
7秒前
MM发布了新的文献求助10
8秒前
草拟大坝完成签到 ,获得积分0
8秒前
细腻海蓝完成签到,获得积分20
9秒前
9秒前
bcc666完成签到,获得积分20
9秒前
10秒前
乐乐应助678采纳,获得10
11秒前
ding应助单薄的书琴采纳,获得10
12秒前
hhhhhh应助Queen采纳,获得20
12秒前
13秒前
精灵半岛发布了新的文献求助10
13秒前
SYLH应助cz采纳,获得10
14秒前
14秒前
zzh发布了新的文献求助30
14秒前
Pamela完成签到,获得积分10
14秒前
1l2kl完成签到,获得积分10
15秒前
花开富贵完成签到,获得积分10
15秒前
PZD完成签到,获得积分10
15秒前
高分求助中
【提示信息,请勿应助】关于scihub 10000
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
Social Research Methods (4th Edition) by Maggie Walter (2019) 2390
A new approach to the extrapolation of accelerated life test data 1000
北师大毕业论文 基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 390
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Robot-supported joining of reinforcement textiles with one-sided sewing heads 360
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4009834
求助须知:如何正确求助?哪些是违规求助? 3549753
关于积分的说明 11303647
捐赠科研通 3284309
什么是DOI,文献DOI怎么找? 1810591
邀请新用户注册赠送积分活动 886367
科研通“疑难数据库(出版商)”最低求助积分说明 811406