Early Prediction of Response to Neoadjuvant Chemotherapy in Breast Cancer Sonography Using Siamese Convolutional Neural Networks

学习迁移 深度学习 乳腺癌 卷积神经网络 乳腺超声检查 模式识别(心理学) 人工神经网络 逻辑回归 先验与后验 接收机工作特性 机器学习 医学 计算机科学 癌症 乳腺摄影术 内科学 人工智能 哲学 认识论
作者
Michał Byra,Katarzyna Dobruch‐Sobczak,Ziemowit Klimonda,Hanna Piotrzkowska‐Wróblewska,Jerzy Litniewski
出处
期刊:IEEE Journal of Biomedical and Health Informatics [Institute of Electrical and Electronics Engineers]
卷期号:25 (3): 797-805 被引量:51
标识
DOI:10.1109/jbhi.2020.3008040
摘要

Early prediction of response to neoadjuvant chemotherapy (NAC) in breast cancer is crucial for guiding therapy decisions. In this work, we propose a deep learning based approach for the early NAC response prediction in ultrasound (US) imaging. We used transfer learning with deep convolutional neural networks (CNNs) to develop the response prediction models. The usefulness of two transfer learning techniques was examined. First, a CNN pre-trained on the ImageNet dataset was utilized. Second, we applied double transfer learning, the CNN pre-trained on the ImageNet dataset was additionally fine-tuned with breast mass US images to differentiate malignant and benign lesions. Two prediction tasks were investigated. First, a L1 regularized logistic regression prediction model was developed based on generic neural features extracted from US images collected before the chemotherapy (a priori prediction). Second, Siamese CNNs were used to quantify differences between US images collected before the treatment and after the first and second course of NAC. The proposed methods were evaluated using US data collected from 39 tumors. The better performing deep learning models achieved areas under the receiver operating characteristic curve of 0.797 and 0.847 in the case of the a priori prediction and the Siamese model, respectively. The proposed approach was compared with a method based on handcrafted morphological features. Our study presents the feasibility of using transfer learning with CNNs for the NAC response prediction in US imaging.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
踏实语蓉发布了新的文献求助10
刚刚
123发布了新的文献求助10
1秒前
搜集达人应助科研pig采纳,获得10
1秒前
王十灵完成签到,获得积分10
2秒前
不配.应助端庄的正豪采纳,获得10
3秒前
华仔应助安静的明辉采纳,获得10
4秒前
明亮灭绝发布了新的文献求助10
5秒前
研友_n0DWDn完成签到,获得积分10
6秒前
6秒前
踏实语蓉完成签到,获得积分10
8秒前
Lily完成签到,获得积分10
8秒前
9秒前
海绵宝宝完成签到,获得积分10
10秒前
欧忒耳佩完成签到,获得积分10
11秒前
波粒海苔发布了新的文献求助10
11秒前
Wait完成签到,获得积分10
11秒前
12秒前
13秒前
13秒前
13秒前
13秒前
qiu完成签到 ,获得积分10
13秒前
thomas完成签到,获得积分10
16秒前
16秒前
gs完成签到,获得积分10
16秒前
徐栩栩发布了新的文献求助10
17秒前
18秒前
xsj关闭了xsj文献求助
18秒前
CipherSage应助jby采纳,获得10
18秒前
别太可爱发布了新的文献求助10
18秒前
务实白开水完成签到 ,获得积分10
19秒前
sll发布了新的文献求助10
19秒前
坚定毛衣完成签到,获得积分10
19秒前
19秒前
19秒前
高消费发布了新的文献求助10
21秒前
mfy发布了新的文献求助10
21秒前
顾矜应助军伊芷兰采纳,获得10
22秒前
丁元英完成签到,获得积分10
22秒前
22秒前
高分求助中
Sustainability in Tides Chemistry 2800
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
Rechtsphilosophie 1000
Bayesian Models of Cognition:Reverse Engineering the Mind 888
Le dégorgement réflexe des Acridiens 800
Defense against predation 800
Very-high-order BVD Schemes Using β-variable THINC Method 568
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3135145
求助须知:如何正确求助?哪些是违规求助? 2786103
关于积分的说明 7775648
捐赠科研通 2441991
什么是DOI,文献DOI怎么找? 1298332
科研通“疑难数据库(出版商)”最低求助积分说明 625112
版权声明 600845