Vortex-line topology in iron-based superconductors with and without second-order topology

马约拉纳 物理 塞曼效应 拓扑(电路) 涡流 超导电性 凝聚态物理 零模式 拓扑序 量子力学 磁场 量子 数学 热力学 组合数学
作者
Majid Kheirkhah,Zhongbo Yan,F. Marsiglio
出处
期刊:Physical review 卷期号:103 (14) 被引量:31
标识
DOI:10.1103/physrevb.103.l140502
摘要

The band topology of a superconductor is known to have profound impact on the existence of Majorana zero modes in vortices. As iron-based superconductors with band inversion and $s_{\pm}$-wave pairing can give rise to time-reversal invariant second-order topological superconductivity, manifested by the presence of helical Majorana hinge states in three dimensions, we are motivated to investigate the interplay between the second-order topology and the vortex lines in both weak- and strong-Zeeman-field regimes. In the weak-Zeeman-field regime, we find that vortex lines far away from the hinges are topologically nontrivial in the weakly doped regime, regardless of whether the second-order topology is present or not. However, when the superconductor falls into the second-order topological phase and a topological vortex line is moved close to the helical Majorana hinge states, we find that their hybridization will trivialize the vortex line and transfer robust Majorana zero modes to the hinges. Furthermore, when the Zeeman field is large enough, we find that the helical Majorana hinge states are changed into chiral Majorana hinge modes and thus a chiral second-order topological superconducting phase is realized. In this regime, the vortex lines are always topologically trivial, no matter how far away they are from the chiral Majorana hinge modes. By incorporating a realistic assumption of inhomogeneous superconductivity, our findings can explain the recent experimental observation of the peculiar coexistence and evolution of topologically nontrivial and trivial vortex lines in iron-based superconductors.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
stt发布了新的文献求助10
1秒前
小蘑菇应助杏花饼采纳,获得10
1秒前
海棠yiyi发布了新的文献求助50
1秒前
camellia完成签到 ,获得积分10
2秒前
2秒前
2秒前
田様应助柠木采纳,获得10
2秒前
2秒前
研友_VZG7GZ应助生气的鸡蛋采纳,获得10
3秒前
3秒前
3秒前
威武的万仇完成签到 ,获得积分10
4秒前
迷路的水彤完成签到 ,获得积分10
4秒前
千里发布了新的文献求助10
4秒前
jogrgr完成签到,获得积分10
4秒前
夯大力完成签到,获得积分10
4秒前
啊娴仔完成签到,获得积分10
5秒前
5秒前
5秒前
韭菜发布了新的文献求助10
5秒前
Harlotte发布了新的文献求助20
6秒前
思源应助系统提示采纳,获得10
6秒前
蜡笔发布了新的文献求助30
6秒前
宋嬴一发布了新的文献求助10
6秒前
6秒前
6秒前
7秒前
HYLynn应助hetao286采纳,获得10
8秒前
10秒前
10秒前
夯大力发布了新的文献求助10
10秒前
10秒前
11秒前
自觉沛芹完成签到,获得积分10
11秒前
YukiXu完成签到 ,获得积分10
11秒前
11秒前
桐桐应助SXM采纳,获得10
12秒前
波特卡斯D艾斯完成签到 ,获得积分10
13秒前
852应助排骨炖豆角采纳,获得10
14秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527521
求助须知:如何正确求助?哪些是违规求助? 3107606
关于积分的说明 9286171
捐赠科研通 2805329
什么是DOI,文献DOI怎么找? 1539901
邀请新用户注册赠送积分活动 716827
科研通“疑难数据库(出版商)”最低求助积分说明 709740