催化作用
钼
水煤气变换反应
化学
催化重整
氧化钼
水煤气
无机化学
氮化物
分子
过渡金属
化学工程
氧化物
合成气
有机化学
图层(电子)
工程类
作者
Zhe-Shan Zhang,Qiang Fu,Kai Xu,Weiwei Wang,Xin‐Pu Fu,Xusheng Zheng,Ke Wu,Chao Ma,Rui Si,Chun‐Jiang Jia,Ling‐Dong Sun,Chun‐Hua Yan
摘要
Apart from active metals, supports also contribute significantly to the catalytic performance of supported metal catalysts. On account of the formed strain and defects, the heterostructured surface of the support may play a crucial role to activate the reactant molecules, while it is usually neglected. In this work, the Pt/γ-Mo2N catalyst was prepared via a facile solution method. This Pt/γ-Mo2N catalyst showed excellent activity and stability for catalyzing the water-gas shift (WGS) reaction. The reaction rates at 240 °C were 16.5 molCO molPt-1s-1 in product-free gas and 5.36 molCO molPt-1 s-1 in full reformate gas, which were almost 20 times that of the catalysts reported. It is found that the molybdenum species in the surface of the Pt/γ-Mo2N catalyst is molybdenum oxide as MoO3. This surface MoO3 is very easily reduced even at room temperature, and it transformed into highly distorted MoOx (2 < x < 3) in the WGS reaction. The MoOx on the catalyst surface greatly enhanced the capability of generating active oxygen vacancies to dissociate H2O molecules, which induced unexpectedly superior catalytic performance. Therefore, the intrinsically active surface in the Pt/γ-Mo2N catalyst for the WGS reaction was molybdenum oxide as MoOx (2 < x < 3).
科研通智能强力驱动
Strongly Powered by AbleSci AI