光电探测器
单层
材料科学
光电子学
紫外线
量子点
吸收(声学)
带隙
宽带
可见光谱
纳米技术
光学
物理
复合材料
作者
Tao Shen,Feng Li,Zhenyun Zhang,Lei Xu,Junjie Qi
标识
DOI:10.1021/acsami.0c14161
摘要
Monolayer MoS2, a direct bandgap transition metal dichalcogenide (TMD), has attracted worldwide attention in electronics and optoelectronics. However, the performance of photodetectors based on monolayer MoS2 is restricted to a weak optical absorption, narrow absorption range, and persistent photoconductance. Herein, benefiting from an easy solution process, high light absorption coefficient, and wide absorption range, environment-friendly CuInSe2 quantum dots (QDs) are hybridized with monolayer MoS2 for high-performance broadband photodetectors. Owing to the favorable type-II energy band alignment of MoS2/CuInSe2-QDs, the hybrid photodetector exhibits a broadband photoresponse from the ultraviolet to near-infrared region, with an ultrahigh photoresponsivity of 74.8 A/W at 1064 nm, and compared with those of the pristine MoS2 device, the photoresponsivity and specific detectivity in the ultraviolet-visible region were enhanced by about 30 and 20 times, respectively. Furthermore, the formed depletion region at the MoS2/CuInSe2-QDs interface can significantly increase the photoresponse speed, and the accumulated holes in the QD side induce a strong photogating effect to improve the photoresponsive characteristics of the hybrid photodetector. Our work opens up opportunities for fabricating high-performance monolayer TMD-based broadband photodetectors.
科研通智能强力驱动
Strongly Powered by AbleSci AI