Prediction of Flow Properties on Turbine Vane Airfoil Surface From 3D Geometry With Convolutional Neural Network

翼型 替代模型 计算流体力学 计算机科学 卷积神经网络 背景(考古学) 涡轮机 人工智能 机器学习 机械工程 航空航天工程 工程类 古生物学 生物
作者
Yuan Jin,Shan Li,Olivier Jung
标识
DOI:10.1115/gt2019-90811
摘要

Abstract Nowadays, Computational Fluid Dynamics (CFD) simulations play an increasingly important role for turbine airfoil design. This high-fidelity approach is capable to provide accurate information of flow fields. Meanwhile, the calculation accuracy is always gained at the expense of numerical cost. This gap limits opportunities for design space exploration. To address this problem, surrogate models (also known as metamodels) are introduced to approximate high-fidelity CFD models. However, traditional surrogate models, such as Kriging or Radial Basis Function, construct response surface on a design space with limited dimensions. This prevents users from predicting the flow fields directly from the geometry and performing interactive design of airfoil. In the present work, we propose a Convolutional Neural Network (CNN) based surrogate model to predict flow properties on turbine vane airfoil surface from 3D airfoil profile defined by point cloud. The proposed CNN architecture adopts a symmetric expanding path that is similar to the so-called U-Net. The geometries in the training and testing dataset are generated via varying the parameters defined by the Free-Form Deformation approach. The corresponding flow fields are obtained through high-fidelity CFD simulations performed in a finite volume context. Furthermore, a gaussian process based Bayesian optimization technique is utilized to tune automatically the hyperparameters of the network. In this work, we trained the CNN based surrogate model with static pressure and temperature on the mean section of turbine vane airfoil surface. The trained model is able to predict in a reliable and efficient way the corresponding property directly from the 3D geometry, which allows engineers to agilely adjust their airfoil design.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Owen应助dream177777采纳,获得10
1秒前
桐桐应助超级的鞅采纳,获得10
1秒前
彩色白桃完成签到,获得积分10
2秒前
单身的夜云完成签到,获得积分10
2秒前
2秒前
3秒前
无情寒荷发布了新的文献求助10
4秒前
科研通AI2S应助hyl采纳,获得10
4秒前
Hello应助木棉采纳,获得30
7秒前
marshyyy应助mxq采纳,获得10
11秒前
13秒前
14秒前
于浩完成签到,获得积分10
16秒前
ganzhongxin发布了新的文献求助10
17秒前
Neon0524完成签到 ,获得积分10
17秒前
18秒前
爱撒娇的曼凝完成签到,获得积分10
18秒前
丘比特应助谦让平安采纳,获得10
20秒前
20秒前
21秒前
Specification应助Lang777采纳,获得10
22秒前
22秒前
23秒前
23秒前
zhou完成签到,获得积分10
23秒前
尛瞐慶成发布了新的文献求助10
24秒前
24秒前
学不会完成签到,获得积分20
25秒前
26秒前
Yu发布了新的文献求助10
26秒前
shan发布了新的文献求助10
27秒前
姜姜发布了新的文献求助10
27秒前
28秒前
学不会发布了新的文献求助10
28秒前
纯氧发布了新的文献求助10
30秒前
31秒前
31秒前
jianning完成签到,获得积分10
31秒前
大个应助橘子采纳,获得10
32秒前
32秒前
高分求助中
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger Heßler, Claudia, Rud 1000
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 1000
Natural History of Mantodea 螳螂的自然史 1000
A Photographic Guide to Mantis of China 常见螳螂野外识别手册 800
Autoregulatory progressive resistance exercise: linear versus a velocity-based flexible model 500
Spatial Political Economy: Uneven Development and the Production of Nature in Chile 400
Research on managing groups and teams 300
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3330178
求助须知:如何正确求助?哪些是违规求助? 2959781
关于积分的说明 8596907
捐赠科研通 2638194
什么是DOI,文献DOI怎么找? 1444196
科研通“疑难数据库(出版商)”最低求助积分说明 669063
邀请新用户注册赠送积分活动 656596