清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

Breakthrough: Phase-Pure 2D Perovskite Films

钙钛矿(结构) 材料科学 相(物质) 化学工程 工程类 化学 有机化学
作者
Fei Zhang,Kai Zhu
出处
期刊:Joule [Elsevier]
卷期号:5 (1): 14-15 被引量:12
标识
DOI:10.1016/j.joule.2020.12.006
摘要

Obtaining phase-pure 2D perovskite films will extend the understanding and applications in various optoelectronic fields. Recently in Nature Energy, Liang and coworkers first present phase-pure 2D perovskites by replacing BAI with BAAc, showing stronger ionic coordination with the perovskite framework. A PCE of 16.25% with enhanced stability was obtained. Obtaining phase-pure 2D perovskite films will extend the understanding and applications in various optoelectronic fields. Recently in Nature Energy, Liang and coworkers first present phase-pure 2D perovskites by replacing BAI with BAAc, showing stronger ionic coordination with the perovskite framework. A PCE of 16.25% with enhanced stability was obtained. The power conversion efficiency (PCE) of perovskite solar cells (PSCs) has increased from 3.8% in 20091Kojima A. Teshima K. Shirai Y. Miyasaka T. Organometal halide perovskites as visible-light sensitizers for photovoltaic cells.J. Am. Chem. Soc. 2009; 131: 6050-6051Crossref PubMed Scopus (12872) Google Scholar to a certified 25.5%2NRELBest Research-Cell Efficiency Chart.Photovolt. Res. 2020; https://www.nrel.gov/pv/cell-efficiency.htmlGoogle Scholar in 2020, resulting in broad interest from academic and industrial photovoltaic (PV) fields. However, the long-term stability under various practical operating conditions are still short for the industrial application. Beside some usual strategies—such as defect passivation and interfacial modification3Zhang F. Zhu K. Additive Engineering for Efficient and Stable Perovskite Solar Cells.Adv. Energy Mater. 2020; 10: 1902579Crossref Scopus (199) Google Scholar,4Xue J. Wang R. Yang Y. The surface of halide perovskites from nano to bulk.Nat. Rev. Mater. 2020; 5: 809-827Crossref Scopus (66) Google Scholar—one important strategy is to use pure two-dimensional (2D) (n = 1) or quasi-2D perovskites in bulk or on the surface of three-dimensional (3D) perovskites (2D–3D).5Zhang F. Lu H. Tong J. Berry J.J. Beard M.C. Zhu K. Advances in two-dimensional organic–inorganic hybrid perovskites.Energy Environ. Sci. 2020; 13: 1154-1186Crossref Google Scholar The general formula of 2D perovskite structures is either (A’)2(A)n-1BnX3n+1, where A’ is a monovalent cation (Ruddlesden-Popper, RP) phase, or (A’)(A)n-1BnX3n+1, where A’ is a divalent cation (Dion-Jacobson, DJ) phase. The typical bulky cations include phenylethylammonium (PEA+) and butylammonium (BA+) for the RP phase and 3-(aminomethyl)piperidinium (3AMP2+) and 1,4-butane diammonium (BDA2+) for the DJ phase of 2D perovskites.5Zhang F. Lu H. Tong J. Berry J.J. Beard M.C. Zhu K. Advances in two-dimensional organic–inorganic hybrid perovskites.Energy Environ. Sci. 2020; 13: 1154-1186Crossref Google Scholar The n value is referred to as the thickness of the inorganic metal halide sheets layer and is often given based on the precursor components.5Zhang F. Lu H. Tong J. Berry J.J. Beard M.C. Zhu K. Advances in two-dimensional organic–inorganic hybrid perovskites.Energy Environ. Sci. 2020; 13: 1154-1186Crossref Google Scholar A pure 2D perovskite structure corresponds to n = 1, a quasi-2D perovskite structure often corresponds to 1 < n ≤ 5, and the general 3D perovskite structure corresponds to n approaching ∞. In practice, for 2D perovskites when n > 3, the resulting materials are often comprised of multiple quantum wells (MQWs) with different n values due to different formation energy. Thus, it is always challenging to prepare phase-pure high-n 2D perovskite films.6Zhang J. Qin J. Wang M. Bai Y. Zou H. Keum J.K. Tao R. Xu H. Yu H. Haacke S. Hu B. Uniform Permutation of Quasi-2D Perovskites by Vacuum Poling for Efficient, High-Fill-Factor Solar Cells.Joule. 2019; 3: 3061-3071Abstract Full Text Full Text PDF Scopus (81) Google Scholar,7Grancini G. Nazeeruddin M.K. Dimensional tailoring of hybrid perovskites for photovoltaics.Nat. Rev. Mater. 2018; 4: 4-22Crossref Scopus (355) Google Scholar In 2014, Smith et al. first reported (PEA)2(MA)2Pb3I10 as absorbers in PSCs and obtained a PCE of 4.73%.8Smith I.C. Hoke E.T. Solis-Ibarra D. McGehee M.D. Karunadasa H.I. A layered hybrid perovskite solar-cell absorber with enhanced moisture stability.Angew. Chem. Int. Ed. 2014; 53: 11232-11235Crossref PubMed Scopus (1219) Google Scholar The best PCE of 2D PSCs (n ≤ 5) has so far reached above 19%9Lai H. Lu D. Xu Z. Zheng N. Xie Z. Liu Y. Organic-Salt-Assisted Crystal Growth and Orientation of Quasi-2D Ruddlesden-Popper Perovskites for Solar Cells with Efficiency over 19%.Adv. Mater. 2020; 32: 2001470Crossref Scopus (59) Google Scholar with a short-circuit current density (Jsc) comparable to the normal 3D PSC, which is likely resulting from an increased fraction of 3D perovskite in the 2D MQWs films. The as-prepared 2D films with mixed n values could restrict their effectiveness for various optoelectronic applications, especially for obtaining the wavelength-tunable light-emitting diodes (LEDs) with highly pure emission colors. It also complicates the scientific understanding of the various physical and chemical properties of the 2D perovskite structures. These will in turn induce another challenge of tailoring materials and structures design. Thus, developing synthetic tools and strategies to obtain pure-phase 2D perovskite structures or test probing percentages of different n values will promote the development of 2D-3D perovskites and extend the understanding of their optoelectronic properties and application in other optoelectronic fields. Recently in Nature Energy, C. Liang and coworkers first present the phase-pure quantum wells (QW) width films by replacing traditional n-butylamine iodide (BAI) with n-butylamine acetate (BAAc).10Liang C. Gu H. Xia Y. Wang Z. Liu X. Xia J. Zuo S. Hu Y. Gao X. Hui W. et al.Two-dimensional Ruddlesden–Popper layered perovskite solar cells based on phase-pure thin films.Nat. Energy. 2020; https://doi.org/10.1038/s41560-020-00721-5Crossref Scopus (78) Google Scholar Due to the stronger ionic coordination between Ac− and Pb2+, the particles in precursor solution with BAAc present a very narrow size distribution (Figure 1), rather than randomly distributed particles in solution with BAI, due to the suppressed aggregation of colloids with more than one unit cell. The stronger interaction between the carbonyl groups of acetate and Pb2+ was proven by Fourier-transform infrared spectra, X-ray absorption fine structure spectroscopy, and 1H nuclear magnetic resonance (NMR) spectra. During the initial stage of spin coating, an intermediate phase (BA)2(MA)3Pb4I13-xAcx⋅(MAI)2 (x ≤ 2) with uniformly distributed, near-monodisperse unit cell particles could be gelled. Subsequently, the unstable Ac- in the intermediate phase will escape and coordinate with MA+, forming the easily decomposed methylammonium acetate (MAAc), and I- will occupy the left vacancy of Ac-, forming the phase-pure QW film. The mechanisms process is also illustrated by the lowest reaction formation enthalpies after introducing BAAc. A reasonable PCE of 16.25% and an open-circuit voltage of 1.31 V were obtained along with a good stability by maintaining above 90% of the initial value after 1,100 h continuous light illumination. This report opens a new direction of how to make 2D films with pure phase, which will extend the understanding of their optoelectronic properties and application in other optoelectronic fields. However, the mechanism is still not very clear for the perovskite formation process involving the intermediate phase. In the near future, studies should focus on more bulky cations and other acidic salts to extend its general use for a wider range of 2D perovskites as well as cheaper and easy-to-obtain raw materials (formamidine acetate salt, FAAc; etc) for scalable applications. With these advancements, various pure-phase 2D perovskite films with certain n values will be easily produced for different optoelectronic applications.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
krajicek完成签到,获得积分10
10秒前
24秒前
1分钟前
bkagyin应助当里个当采纳,获得10
1分钟前
jinger完成签到 ,获得积分10
1分钟前
2分钟前
闻巷雨完成签到 ,获得积分10
2分钟前
2分钟前
tt完成签到,获得积分10
2分钟前
当里个当发布了新的文献求助10
2分钟前
2分钟前
傅嘉庆发布了新的文献求助10
2分钟前
SciGPT应助傅嘉庆采纳,获得10
2分钟前
当里个当完成签到,获得积分10
2分钟前
任性的一斩完成签到,获得积分10
2分钟前
orixero应助科研通管家采纳,获得10
3分钟前
Alisha完成签到,获得积分10
4分钟前
小蘑菇应助科研通管家采纳,获得10
5分钟前
科研通AI6应助科研通管家采纳,获得10
5分钟前
李志全完成签到 ,获得积分10
5分钟前
lxj完成签到 ,获得积分10
6分钟前
木子完成签到 ,获得积分10
6分钟前
英姑应助科研通管家采纳,获得10
7分钟前
火山蜗牛完成签到,获得积分10
7分钟前
天天快乐应助小白采纳,获得10
7分钟前
ilk666完成签到,获得积分10
8分钟前
8分钟前
乐乐应助科研通管家采纳,获得10
9分钟前
量子星尘发布了新的文献求助10
9分钟前
9分钟前
平常以云完成签到 ,获得积分10
10分钟前
10分钟前
10分钟前
10分钟前
傅嘉庆发布了新的文献求助10
10分钟前
小白发布了新的文献求助10
11分钟前
11分钟前
不安青牛应助zhangxiaoqing采纳,获得10
11分钟前
小马甲应助傅嘉庆采纳,获得10
11分钟前
啦啦啦发布了新的文献求助10
11分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
2025-2031全球及中国金刚石触媒粉行业研究及十五五规划分析报告 9000
Encyclopedia of the Human Brain Second Edition 8000
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
Real World Research, 5th Edition 680
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 660
Superabsorbent Polymers 600
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5681763
求助须知:如何正确求助?哪些是违规求助? 5012693
关于积分的说明 15176093
捐赠科研通 4841267
什么是DOI,文献DOI怎么找? 2595068
邀请新用户注册赠送积分活动 1548093
关于科研通互助平台的介绍 1506093