结构光三维扫描仪
计算机科学
人工智能
绝对相位
编码(内存)
卷积神经网络
计算机视觉
投影(关系代数)
混叠
深度学习
轮廓仪
帧(网络)
单发
相位恢复
人工神经网络
相(物质)
模式识别(心理学)
算法
傅里叶变换
光学
欠采样
数学
扫描仪
数学分析
量子力学
电信
有机化学
物理
化学
表面粗糙度
作者
Yixuan Li,Jiaming Qian,Shijie Feng,Qian Chen,Chao Zuo
摘要
Using a single fringe image to complete the dynamic absolute 3D reconstruction has become a tremendous challenge and an eternal pursuit for researchers. In fringe projection profilometry (FPP), although many methods can achieve high-precision 3D reconstruction from simple system architecture via appropriate encoding ways, they usually cannot retrieve the absolute 3D information of objects with complex surfaces through only a single fringe pattern. In this work, we develop a single-frame composite fringe encoding approach and use a deep convolutional neural network to retrieve the absolute phase of the object from this composite pattern end to- end. The proposed method can directly obtain spectrum-aliasing-free phase information and robust phase unwrapping from single-frame compound input through extensive data learning. Experiments have demonstrated that the proposed deep-learning-based approach can achieve absolute phase retrieval using a single image.
科研通智能强力驱动
Strongly Powered by AbleSci AI