A survey of deep learning models in medical therapeutic areas.

机器学习 人工神经网络 领域(数学)
作者
Alberto Nogales,Álvaro J. García-Tejedor,Diana Monge,Juan Serrano Vara,Cristina Anton
出处
期刊:Artificial Intelligence in Medicine [Elsevier]
卷期号:112: 102020-102020 被引量:7
标识
DOI:10.1016/j.artmed.2021.102020
摘要

Artificial intelligence is a broad field that comprises a wide range of techniques, where deep learning is presently the one with the most impact. Moreover, the medical field is an area where data both complex and massive and the importance of the decisions made by doctors make it one of the fields in which deep learning techniques can have the greatest impact. A systematic review following the Cochrane recommendations with a multidisciplinary team comprised of physicians, research methodologists and computer scientists has been conducted. This survey aims to identify the main therapeutic areas and the deep learning models used for diagnosis and treatment tasks. The most relevant databases included were MedLine, Embase, Cochrane Central, Astrophysics Data System, Europe PubMed Central, Web of Science and Science Direct. An inclusion and exclusion criteria were defined and applied in the first and second peer review screening. A set of quality criteria was developed to select the papers obtained after the second screening. Finally, 126 studies from the initial 3493 papers were selected and 64 were described. Results show that the number of publications on deep learning in medicine is increasing every year. Also, convolutional neural networks are the most widely used models and the most developed area is oncology where they are used mainly for image analysis.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2秒前
2秒前
2秒前
YZT8848完成签到,获得积分10
4秒前
4秒前
轻松小之发布了新的文献求助30
5秒前
huo应助科研通管家采纳,获得10
7秒前
丘比特应助科研通管家采纳,获得10
7秒前
4399com应助科研通管家采纳,获得10
7秒前
华仔应助科研通管家采纳,获得10
7秒前
汉堡包应助科研通管家采纳,获得10
7秒前
汉堡包应助科研通管家采纳,获得10
7秒前
宴之思完成签到,获得积分10
8秒前
8秒前
一只小原关注了科研通微信公众号
11秒前
hanzhang完成签到,获得积分10
11秒前
14秒前
酷酷忆安完成签到,获得积分10
17秒前
17秒前
zijinbeier完成签到,获得积分10
17秒前
今后应助的风格采纳,获得10
18秒前
无花果应助科研八戒采纳,获得10
19秒前
tt发布了新的文献求助10
20秒前
linda完成签到,获得积分10
20秒前
XuYS完成签到,获得积分10
21秒前
curtisness完成签到,获得积分0
21秒前
phil完成签到,获得积分20
22秒前
ff发布了新的文献求助10
24秒前
28秒前
28秒前
28秒前
一只小原发布了新的文献求助10
29秒前
29秒前
tian2003完成签到,获得积分20
30秒前
uniondavid完成签到,获得积分10
31秒前
无花果应助彩色小凡采纳,获得10
31秒前
tt完成签到,获得积分10
31秒前
mwz完成签到,获得积分10
33秒前
34秒前
noobmaster发布了新的文献求助10
34秒前
高分求助中
Licensing Deals in Pharmaceuticals 2019-2024 3000
Cognitive Paradigms in Knowledge Organisation 2000
Effect of reactor temperature on FCC yield 2000
How Maoism Was Made: Reconstructing China, 1949-1965 800
Introduction to Spectroscopic Ellipsometry of Thin Film Materials Instrumentation, Data Analysis, and Applications 600
Promoting women's entrepreneurship in developing countries: the case of the world's largest women-owned community-based enterprise 500
Shining Light on the Dark Side of Personality 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3309791
求助须知:如何正确求助?哪些是违规求助? 2943034
关于积分的说明 8512084
捐赠科研通 2618067
什么是DOI,文献DOI怎么找? 1430810
科研通“疑难数据库(出版商)”最低求助积分说明 664324
邀请新用户注册赠送积分活动 649469