微尺度化学
材料科学
纳米技术
动力学蒙特卡罗方法
焓
动力控制
动能
熵(时间箭头)
聚合物
纳米颗粒
电子断层摄影术
蒙特卡罗方法
化学物理
热力学
化学
物理
数学教育
透射电子显微镜
复合材料
催化作用
统计
量子力学
扫描透射电子显微镜
生物化学
数学
作者
Mohammad‐Amin Moradi,E. Deniz Eren,Massimiliano Chiappini,Sebastian Rzadkiewicz,Maurits Goudzwaard,Mark M. J. van Rijt,Arthur D. A. Keizer,Alexander F. Routh,Marjolein Dijkstra,Gijsbertus de With,Nico A. J. M. Sommerdijk,Heiner Friedrich,Joseph P. Patterson
出处
期刊:Nature Materials
[Springer Nature]
日期:2021-01-28
卷期号:20 (4): 541-547
被引量:27
标识
DOI:10.1038/s41563-020-00900-5
摘要
Periodic nano- or microscale structures are used to control light, energy and mass transportation. Colloidal organization is the most versatile method used to control nano- and microscale order, and employs either the enthalpy-driven self-assembly of particles at a low concentration or the entropy-driven packing of particles at a high concentration. Nonetheless, it cannot yet provide the spontaneous three-dimensional organization of multicomponent particles at a high concentration. Here we combined these two concepts into a single strategy to achieve hierarchical multicomponent materials. We tuned the electrostatic attraction between polymer and silica nanoparticles to create dynamic supracolloids whose components, on drying, reorganize by entropy into three-dimensional structured materials. Cryogenic electron tomography reveals the kinetic pathways, whereas Monte Carlo simulations combined with a kinetic model provide design rules to form the supracolloids and control the kinetic pathways. This approach may be useful to fabricate hierarchical hybrid materials for distinct technological applications.
科研通智能强力驱动
Strongly Powered by AbleSci AI