DRAMA: Discovering Disease-related circRNA-miRNA-mRNA Axes from Disease-RNA Information Network

小RNA 疾病 核糖核酸 信使核糖核酸 计算机科学 计算生物学 戏剧 生物 基因 遗传学 医学 病理 艺术 文学类
作者
Chengxin He,Lei Duan,Huiru Zheng,Jesse Li‐Ling,Longhai Li
标识
DOI:10.1109/bibm49941.2020.9313448
摘要

Non-coding RNAs are gaining prominence in biology and medicine, as they play major roles in cellular homeostasis and disease. A large number of computational methods have been recently developed for the prediction of the relationship between ncRNAs and diseases, which can alleviate the time-consuming and labor-intensive exploration among biological experiments. However, such methods have mainly focused on the association between the disease and certain types of ncRNAs such as miRNA or circRNA, thereby ignoring the impact of the interactions among ncRNAs on the diseases. We hereby propose a novel approach called DRAMA for discovering disease-related circRNA-miRNA-mRNA axes from the disease-RNA information network we constructed. Our method, using graph convolutional network, learns the characteristic representation of each biological entity by propagating and aggregating local neighbor information based on the global structure of the network. And then we design a favorable measurement to infer disease-related circRNA-miRNA-mRNA axes based on the learned embeddings. To evaluate the effectiveness of DRAMA, we conduct experiments on real-world datasets. Further analysis reveals that DRAMA outperforms other state-of-the-art baselines on most of the metrics.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
左白易完成签到,获得积分10
1秒前
li完成签到 ,获得积分10
3秒前
Owen应助花花采纳,获得10
4秒前
6秒前
耶耶耶完成签到 ,获得积分10
10秒前
倪倪发布了新的文献求助10
11秒前
乐乐应助xu0906采纳,获得10
13秒前
20秒前
无花果应助佰白采纳,获得10
22秒前
daheeeee完成签到,获得积分10
22秒前
坚强白玉完成签到,获得积分10
25秒前
井野浮应助科研通管家采纳,获得10
26秒前
NexusExplorer应助科研通管家采纳,获得10
26秒前
完美世界应助科研通管家采纳,获得10
26秒前
爆米花应助科研通管家采纳,获得10
27秒前
科研通AI2S应助科研通管家采纳,获得10
27秒前
充电宝应助科研通管家采纳,获得10
27秒前
烟花应助科研通管家采纳,获得10
27秒前
JamesPei应助科研通管家采纳,获得10
27秒前
xu应助科研通管家采纳,获得20
27秒前
NexusExplorer应助科研通管家采纳,获得10
27秒前
法外狂徒应助科研通管家采纳,获得10
27秒前
28秒前
29秒前
30秒前
嗷嗷嗷啊完成签到,获得积分10
30秒前
31秒前
miketyson完成签到,获得积分10
33秒前
亓泽融发布了新的文献求助10
34秒前
Ava应助倪倪采纳,获得10
36秒前
37秒前
考拉发布了新的文献求助10
37秒前
38秒前
热情千亦发布了新的文献求助10
38秒前
40秒前
42秒前
深情白风发布了新的文献求助10
43秒前
于123456789发布了新的文献求助10
44秒前
Ava应助atlab采纳,获得200
45秒前
海绵宝宝发布了新的文献求助30
46秒前
高分求助中
The late Devonian Standard Conodont Zonation 2000
歯科矯正学 第7版(或第5版) 1004
Nickel superalloy market size, share, growth, trends, and forecast 2023-2030 1000
Semiconductor Process Reliability in Practice 1000
Smart but Scattered: The Revolutionary Executive Skills Approach to Helping Kids Reach Their Potential (第二版) 1000
Security Awareness: Applying Practical Cybersecurity in Your World 6th Edition 800
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 700
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3240773
求助须知:如何正确求助?哪些是违规求助? 2885503
关于积分的说明 8238845
捐赠科研通 2553913
什么是DOI,文献DOI怎么找? 1382066
科研通“疑难数据库(出版商)”最低求助积分说明 649461
邀请新用户注册赠送积分活动 625079