DRAMA: Discovering Disease-related circRNA-miRNA-mRNA Axes from Disease-RNA Information Network

小RNA 疾病 核糖核酸 信使核糖核酸 计算机科学 计算生物学 戏剧 生物 基因 遗传学 医学 病理 艺术 文学类
作者
Chengxin He,Lei Duan,Huiru Zheng,Jesse Li‐Ling,Longhai Li
标识
DOI:10.1109/bibm49941.2020.9313448
摘要

Non-coding RNAs are gaining prominence in biology and medicine, as they play major roles in cellular homeostasis and disease. A large number of computational methods have been recently developed for the prediction of the relationship between ncRNAs and diseases, which can alleviate the time-consuming and labor-intensive exploration among biological experiments. However, such methods have mainly focused on the association between the disease and certain types of ncRNAs such as miRNA or circRNA, thereby ignoring the impact of the interactions among ncRNAs on the diseases. We hereby propose a novel approach called DRAMA for discovering disease-related circRNA-miRNA-mRNA axes from the disease-RNA information network we constructed. Our method, using graph convolutional network, learns the characteristic representation of each biological entity by propagating and aggregating local neighbor information based on the global structure of the network. And then we design a favorable measurement to infer disease-related circRNA-miRNA-mRNA axes based on the learned embeddings. To evaluate the effectiveness of DRAMA, we conduct experiments on real-world datasets. Further analysis reveals that DRAMA outperforms other state-of-the-art baselines on most of the metrics.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
bkagyin应助29采纳,获得10
刚刚
大米饭顺利毕业完成签到 ,获得积分10
刚刚
花生四烯酸完成签到 ,获得积分10
刚刚
浮游应助linxc07采纳,获得10
1秒前
1秒前
2秒前
安静的雅香完成签到,获得积分10
3秒前
赘婿应助AnJaShua采纳,获得30
3秒前
Galaxy8完成签到,获得积分10
4秒前
JamesPei应助花开米兰城采纳,获得10
4秒前
Orange应助天气真好采纳,获得10
4秒前
5秒前
6秒前
清爽夜雪发布了新的文献求助10
6秒前
7秒前
8秒前
9秒前
万能图书馆应助席山采纳,获得10
9秒前
不倦发布了新的文献求助10
10秒前
10秒前
活力的小小完成签到,获得积分10
10秒前
HwangHoyan发布了新的文献求助10
10秒前
11秒前
洛洛发布了新的文献求助30
12秒前
12秒前
浮游应助宋朝灬的雨采纳,获得10
13秒前
orixero应助白什么冰采纳,获得10
13秒前
14秒前
清爽夜雪完成签到,获得积分0
14秒前
皮皮发布了新的文献求助10
15秒前
15秒前
科研通AI5应助222采纳,获得10
15秒前
LMFY发布了新的文献求助10
15秒前
16秒前
17秒前
搬砖美少女完成签到,获得积分10
18秒前
端庄擎关注了科研通微信公众号
18秒前
18秒前
同学好发布了新的文献求助10
20秒前
浮游应助鹅糖采纳,获得10
20秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Pipeline and riser loss of containment 2001 - 2020 (PARLOC 2020) 1000
Artificial Intelligence driven Materials Design 600
Comparing natural with chemical additive production 500
Machine Learning in Chemistry 500
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 500
A Manual for the Identification of Plant Seeds and Fruits : Second revised edition 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5194866
求助须知:如何正确求助?哪些是违规求助? 4377064
关于积分的说明 13631202
捐赠科研通 4232285
什么是DOI,文献DOI怎么找? 2321532
邀请新用户注册赠送积分活动 1319647
关于科研通互助平台的介绍 1270054