清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

Mobile Robot Path Planning in Dynamic Environments Through Globally Guided Reinforcement Learning

强化学习 运动规划 计算机科学 移动机器人 机器人 障碍物 避障 路径(计算) 人工智能 利用 分布式计算 机器学习 计算机安全 地理 计算机网络 考古
作者
Binyu Wang,Zhe Liu,Qingbiao Li,Amanda Prorok
出处
期刊:IEEE robotics and automation letters 卷期号:5 (4): 6932-6939 被引量:178
标识
DOI:10.1109/lra.2020.3026638
摘要

Path planning for mobile robots in large dynamic environments is a challenging problem, as the robots are required to efficiently reach their given goals while simultaneously avoiding potential conflicts with other robots or dynamic objects. In the presence of dynamic obstacles, traditional solutions usually employ re-planning strategies, which re-call a planning algorithm to search for an alternative path whenever the robot encounters a conflict. However, such re-planning strategies often cause unnecessary detours. To address this issue, we propose a learning-based technique that exploits environmental spatio-temporal information. Different from existing learning-based methods, we introduce a globally guided reinforcement learning approach (G2RL), which incorporates a novel reward structure that generalizes to arbitrary environments. We apply G2RL to solve the multi-robot path planning problem in a fully distributed reactive manner. We evaluate our method across different map types, obstacle densities, and the number of robots. Experimental results show that G2RL generalizes well, outperforming existing distributed methods, and performing very similarly to fully centralized state-of-the-art benchmarks.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
有人重新开启了Fury文献应助
6秒前
8R60d8应助有人采纳,获得10
52秒前
华仔应助科研通管家采纳,获得10
1分钟前
1分钟前
2分钟前
iwaljq发布了新的文献求助10
2分钟前
iwaljq完成签到,获得积分10
2分钟前
顾矜应助阿北采纳,获得10
2分钟前
3分钟前
3分钟前
3分钟前
4分钟前
Krim完成签到 ,获得积分10
4分钟前
严珍珍完成签到 ,获得积分10
5分钟前
Airi发布了新的文献求助10
7分钟前
ding应助科研通管家采纳,获得10
7分钟前
邋遢大王完成签到,获得积分10
9分钟前
9分钟前
勤恳惮发布了新的文献求助30
9分钟前
勤恳惮完成签到,获得积分10
10分钟前
ranj完成签到,获得积分10
10分钟前
山止川行完成签到 ,获得积分10
10分钟前
Jayden完成签到 ,获得积分10
11分钟前
11分钟前
11分钟前
11分钟前
11分钟前
狒狒发布了新的文献求助10
12分钟前
狒狒完成签到,获得积分10
12分钟前
12分钟前
GAOGONGZI完成签到,获得积分10
12分钟前
12分钟前
阿北发布了新的文献求助10
13分钟前
Airi发布了新的文献求助10
13分钟前
Wang完成签到 ,获得积分20
13分钟前
13分钟前
Airi完成签到,获得积分10
13分钟前
Milo完成签到,获得积分10
13分钟前
完美耦合发布了新的文献求助10
13分钟前
含糊的茹妖完成签到 ,获得积分10
14分钟前
高分求助中
The Oxford Handbook of Social Cognition (Second Edition, 2024) 1050
Kinetics of the Esterification Between 2-[(4-hydroxybutoxy)carbonyl] Benzoic Acid with 1,4-Butanediol: Tetrabutyl Orthotitanate as Catalyst 1000
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
Rechtsphilosophie 1000
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
Handbook of Qualitative Cross-Cultural Research Methods 600
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3139600
求助须知:如何正确求助?哪些是违规求助? 2790479
关于积分的说明 7795340
捐赠科研通 2446926
什么是DOI,文献DOI怎么找? 1301511
科研通“疑难数据库(出版商)”最低求助积分说明 626259
版权声明 601176