Valence Engineering via In Situ Carbon Reduction on Octahedron Sites Mn3O4 for Ultra‐Long Cycle Life Aqueous Zn‐Ion Battery

材料科学 价(化学) 溶解 水溶液 歧化 三元运算 八面体 氧气 析氧 电化学 化学工程 阴极 结晶学 晶体结构 电极 物理化学 冶金 催化作用 有机化学 程序设计语言 计算机科学 化学 量子力学 工程类 物理 生物化学
作者
Qiuyang Tan,Xueting Li,Bao Zhang,Xu Chen,Ya-Wen Tian,Houzhao Wan,Lishang Zhang,Ling Miao,Cong Wang,Yi Gan,Jianjun Jiang,Yi Wang,Hao Wang
出处
期刊:Advanced Energy Materials [Wiley]
卷期号:10 (38) 被引量:240
标识
DOI:10.1002/aenm.202001050
摘要

Abstract In recent years, rechargeable aqueous zinc‐ion batteries (ZIBs) have received much attention. However, the disproportionation effect of Mn 2+ seriously affects the capacity retention of ZIBs during cycling. Here, the capacity retention of the Mn 3 O 4 cathode is improved by effective valence engineering. The valence engineering of Mn 3 O 4 is caused by bulk oxygen defects, which are in situ derived from the Mn‐metal organic framework during carbonization. Bulk oxygen defects can change the (MnO 6 ) octahedral structure, which improves structural stability and inhibits the dissolution of Mn 2+ . The ZIB assembled from bulk oxygen defects Mn 3 O 4 @C nanorod arrays (O d ‐Mn 3 O 4 @C NA/CC) exhibits an ultra‐long cycle life, reaching 84.1 mAh g −1 after 12 000 cycles at 5 A g −1 (up to 95.7% of the initial capacity). Furthermore, the battery has a high specific capacity of 396.2 mAh g −1 at 0.2 A g −1 . Ex situ characterization results show that initial Mn 3 O 4 is converted to ramsdellite MnO 2 for insertion and extraction of H + and Zn 2+ . First‐principles calculations show that the charge density of Mn 3+ increases greatly, which improves the conductivity. In addition, the flexible quasi‐solid‐state ZIB is successfully assembled using O d ‐Mn 3 O 4 @ C NA/CC. Valence engineering induced by bulk oxygen defects can help develop advanced cathodes for aqueous ZIB.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
善学以致用应助123采纳,获得10
1秒前
1秒前
2秒前
AFEUWOS01发布了新的文献求助30
2秒前
星辰大海应助Left采纳,获得10
2秒前
sansan发布了新的文献求助10
3秒前
哈哈哈完成签到,获得积分10
3秒前
科研通AI5应助DTT采纳,获得10
4秒前
4秒前
5秒前
坚强不言完成签到,获得积分10
5秒前
5秒前
小天应助善良的路灯采纳,获得30
6秒前
6秒前
脑洞疼应助yigu采纳,获得10
7秒前
7秒前
Hu完成签到 ,获得积分10
9秒前
liuyan432完成签到,获得积分10
9秒前
cc完成签到,获得积分10
9秒前
易烊千玺完成签到,获得积分20
9秒前
哒哒哒哒完成签到,获得积分10
9秒前
10秒前
李健应助陶醉觅夏采纳,获得10
11秒前
11秒前
独特凡松完成签到,获得积分10
11秒前
木笔朱瑾完成签到 ,获得积分10
12秒前
Rinohalt完成签到,获得积分10
12秒前
13秒前
孙梁子完成签到,获得积分10
13秒前
核桃花生奶兔完成签到 ,获得积分10
14秒前
请叫我风吹麦浪应助HJJHJH采纳,获得10
15秒前
16秒前
孙奕发布了新的文献求助10
16秒前
xiaotian_fan完成签到,获得积分10
16秒前
18秒前
18秒前
科研通AI2S应助laochen采纳,获得10
18秒前
盘尼西林发布了新的文献求助10
18秒前
迟大猫应助专心搞学术采纳,获得10
19秒前
21秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527884
求助须知:如何正确求助?哪些是违规求助? 3108006
关于积分的说明 9287444
捐赠科研通 2805757
什么是DOI,文献DOI怎么找? 1540033
邀请新用户注册赠送积分活动 716904
科研通“疑难数据库(出版商)”最低求助积分说明 709794