材料科学
价(化学)
溶解
水溶液
歧化
锰
三元运算
八面体
氧气
析氧
电化学
化学工程
阴极
结晶学
晶体结构
电极
物理化学
冶金
催化作用
有机化学
程序设计语言
计算机科学
化学
量子力学
工程类
物理
生物化学
作者
Qiuyang Tan,Xueting Li,Bao Zhang,Xu Chen,Ya-Wen Tian,Houzhao Wan,Lishang Zhang,Ling Miao,Cong Wang,Yi Gan,Jianjun Jiang,Yi Wang,Hao Wang
标识
DOI:10.1002/aenm.202001050
摘要
Abstract In recent years, rechargeable aqueous zinc‐ion batteries (ZIBs) have received much attention. However, the disproportionation effect of Mn 2+ seriously affects the capacity retention of ZIBs during cycling. Here, the capacity retention of the Mn 3 O 4 cathode is improved by effective valence engineering. The valence engineering of Mn 3 O 4 is caused by bulk oxygen defects, which are in situ derived from the Mn‐metal organic framework during carbonization. Bulk oxygen defects can change the (MnO 6 ) octahedral structure, which improves structural stability and inhibits the dissolution of Mn 2+ . The ZIB assembled from bulk oxygen defects Mn 3 O 4 @C nanorod arrays (O d ‐Mn 3 O 4 @C NA/CC) exhibits an ultra‐long cycle life, reaching 84.1 mAh g −1 after 12 000 cycles at 5 A g −1 (up to 95.7% of the initial capacity). Furthermore, the battery has a high specific capacity of 396.2 mAh g −1 at 0.2 A g −1 . Ex situ characterization results show that initial Mn 3 O 4 is converted to ramsdellite MnO 2 for insertion and extraction of H + and Zn 2+ . First‐principles calculations show that the charge density of Mn 3+ increases greatly, which improves the conductivity. In addition, the flexible quasi‐solid‐state ZIB is successfully assembled using O d ‐Mn 3 O 4 @ C NA/CC. Valence engineering induced by bulk oxygen defects can help develop advanced cathodes for aqueous ZIB.
科研通智能强力驱动
Strongly Powered by AbleSci AI