亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Under the condition of unitization at encoding rather than unitization at retrieval, familiarity could support associative recognition and the relationship between unitization and recollection was moderated by unitization-congruence

结合属性 召回 同余(几何) 心理学 编码(内存) 认知心理学 联想学习 内容寻址存储器 计算机科学 人工智能 社会心理学 数学 人工神经网络 纯数学
作者
Zejun Liu,Yujuan Wang,Chunyan Guo
出处
期刊:Learning & Memory [Cold Spring Harbor Laboratory]
卷期号:27 (3): 104-113 被引量:9
标识
DOI:10.1101/lm.051094.119
摘要

It is widely accepted that associative recognition can be supported by familiarity through integrating more than two stimuli into a unit, but there are still three unsolved questions: (1) how unitization affects recollection-based associative recognition; (2) whether it is necessary to match the level of unitization (LOU) between original and rearranged pairs, which was term as unitization-congruence (UC); (3) whether unitization can occur at encoding or at retrieval. The purposes of this study are to try to answer these questions. During the encoding phase, the participants were asked to learn compound words and unrelated word pairs, and during the retrieval phase, they needed to distinguish intact pairs from rearranged consistent and rearranged inconsistent pairs with “remember/know” paradigm. The results showed that (1) the role of unitization in recollection was moderated by UC; (2) Under the consistent UC condition, unitization could improve familiarity-based associative recognition without affecting recollection-based associative recognition, while under the inconsistent UC condition, unitization could improve familiarity-based and recollection-based associative recognition simultaneously, these results indicated that it was necessary to match the LOU between original and rearranged pairs; (3) unitization at encoding could support familiarity-based associative recognition, while unitization at retrieval did not. In briefly, unitization at encoding could improve associative recognition and this effect was moderated by UC, while unitization at retrieval did not affect associative recognition.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
10秒前
gszy1975完成签到,获得积分10
11秒前
NexusExplorer应助Vivienne采纳,获得20
14秒前
komorebi发布了新的文献求助30
16秒前
CipherSage应助mango采纳,获得10
21秒前
Gambu完成签到,获得积分10
49秒前
涛涛神发布了新的文献求助10
49秒前
55秒前
Lucas应助涛涛神采纳,获得10
1分钟前
Faiholo完成签到 ,获得积分10
1分钟前
1分钟前
申腾达发布了新的文献求助10
2分钟前
Omni发布了新的文献求助20
2分钟前
2分钟前
2分钟前
sugkook发布了新的文献求助10
2分钟前
2分钟前
Pattis完成签到 ,获得积分10
2分钟前
量子星尘发布了新的文献求助10
2分钟前
2分钟前
涛涛神发布了新的文献求助10
2分钟前
2分钟前
2分钟前
Gambu发布了新的文献求助10
2分钟前
Vivienne发布了新的文献求助20
2分钟前
last炫神丶发布了新的文献求助10
2分钟前
科研通AI2S应助科研通管家采纳,获得10
2分钟前
英姑应助科研通管家采纳,获得10
2分钟前
yr应助科研通管家采纳,获得10
2分钟前
last炫神丶完成签到,获得积分10
2分钟前
2分钟前
3分钟前
脑洞疼应助啵子采纳,获得10
3分钟前
mango发布了新的文献求助10
3分钟前
量子星尘发布了新的文献求助10
3分钟前
共享精神应助mango采纳,获得10
3分钟前
mango完成签到,获得积分20
3分钟前
Lumi完成签到,获得积分20
3分钟前
3分钟前
Lumi发布了新的文献求助10
3分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Forensic and Legal Medicine Third Edition 5000
Introduction to strong mixing conditions volume 1-3 5000
Aerospace Engineering Education During the First Century of Flight 3000
Agyptische Geschichte der 21.30. Dynastie 3000
Les Mantodea de guyane 2000
Electron Energy Loss Spectroscopy 1500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5780379
求助须知:如何正确求助?哪些是违规求助? 5654974
关于积分的说明 15453057
捐赠科研通 4911055
什么是DOI,文献DOI怎么找? 2643241
邀请新用户注册赠送积分活动 1590891
关于科研通互助平台的介绍 1545411