亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

A survey on river water quality modelling using artificial intelligence models: 2000–2020

稳健性(进化) 计算机科学 预警系统 可解释性 水质 持续性 数据挖掘 人工智能 生态学 生物化学 电信 生物 基因 化学
作者
Tiyasha Tiyasha,Tran Minh Tung,Zaher Mundher Yaseen‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬
出处
期刊:Journal of Hydrology [Elsevier]
卷期号:585: 124670-124670 被引量:461
标识
DOI:10.1016/j.jhydrol.2020.124670
摘要

There has been an unsettling rise in the river contamination due to the climate change and anthropogenic activities. Last decades’ research has immensely focussed on river basin water quality (WQ) prediction, risk assessment and pollutant classification techniques to design more potent management policies and advanced early warning system. The next challenge is dealing with water-related data as they are problematic to handle owing to their nonlinearity, nonstationary feature and vague properties due to the unpredictable natural changes, interdependent relationship, human interference and complexity. Artificial intelligence (AI) models have shown remarkable success and superiority to handle such data owing to their higher accuracy to deal with non-linear data, robustness, reliability, cost-effectiveness, problem-solving capability, decision-making capability, efficiency and effectiveness. AI models are the perfect tools for river WQ monitoring, management, sustainability and policymaking. This research reports the state of the art of various AI models implemented for river WQ simulation over the past two decades (2000–2020). Correspondingly, over 200 research articles are reviewed from the Web of Science journals. The survey covers the model structure, input variability, performance metrics, regional generalisation investigation and comprehensive assessments of AI models progress in river water quality research. The increasing contaminants, the lack of funding and the deficiency in data, numerous variables and unique data time series pattern based on the geological area have increased the need for river WQ monitoring and control even more. Hence, this is highly emphasising the involvement of AI models development which can deal with missing data, able to integrate the features of a black-box model and white-box models, benchmarked model and automated early warning system are few of many points need more research. Despite extensive research on WQ simulation using AI models, shortcomings remain according to the current survey, and several possible future research directions are proposed. Overall, this survey provides a new milestone in water resource engineering on the AI model implementation, innovation and transformation in surface WQ modelling with many formidable problems in different blossoming area and objectives to be achieved in the future.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
小龙女发布了新的文献求助10
4秒前
Ava应助zhang_23采纳,获得10
6秒前
李健应助tufei采纳,获得10
8秒前
Lorain完成签到,获得积分10
12秒前
希望天下0贩的0应助realzuli采纳,获得10
14秒前
烟花应助小龙女采纳,获得10
24秒前
27秒前
华仔应助hio采纳,获得10
28秒前
34秒前
36秒前
40秒前
景胜杰发布了新的文献求助30
41秒前
寻道图强应助科研通管家采纳,获得30
1分钟前
1分钟前
1分钟前
LiuXiaoJie发布了新的文献求助10
1分钟前
1分钟前
1分钟前
1分钟前
采薇发布了新的文献求助10
1分钟前
2分钟前
LiuXiaoJie完成签到,获得积分10
2分钟前
2分钟前
2分钟前
icedreamer111发布了新的文献求助10
2分钟前
善学以致用应助icedreamer111采纳,获得10
2分钟前
2分钟前
ZMM完成签到,获得积分10
2分钟前
踏实的静竹完成签到,获得积分10
2分钟前
2分钟前
李健应助景胜杰采纳,获得30
2分钟前
科目三应助无语的沉鱼采纳,获得10
2分钟前
称心的海蓝完成签到 ,获得积分10
2分钟前
2分钟前
tufei发布了新的文献求助10
2分钟前
2分钟前
2分钟前
tufei完成签到,获得积分10
2分钟前
2分钟前
小西米完成签到 ,获得积分10
3分钟前
高分求助中
The late Devonian Standard Conodont Zonation 2000
The Lali Section: An Excellent Reference Section for Upper - Devonian in South China 1500
Nickel superalloy market size, share, growth, trends, and forecast 2023-2030 1000
Smart but Scattered: The Revolutionary Executive Skills Approach to Helping Kids Reach Their Potential (第二版) 1000
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 800
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 800
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3244671
求助须知:如何正确求助?哪些是违规求助? 2888383
关于积分的说明 8252725
捐赠科研通 2556854
什么是DOI,文献DOI怎么找? 1385369
科研通“疑难数据库(出版商)”最低求助积分说明 650157
邀请新用户注册赠送积分活动 626247