氧化应激
肺
化学
细支气管
标记法
细胞凋亡
末端脱氧核苷酸转移酶
炎症
病理
免疫学
内科学
医学
生物化学
作者
Lu Jiang,Jingjing Fang,Kexian Li,Xinhong Xu,Jiangbo Qiao
标识
DOI:10.1080/10962247.2020.1860156
摘要
The objective of the research was to reveal the potential toxicity effects of methyl mercaptan on rat lung tissue. A dynamic exposure device and Sprague-Dawley (SD) rats were adopted. The exposure concentration of methyl mercaptan was 0.5 ± 0.1 ppm. The exposure procedure was 6 h/day, continuing for 30 days. The routine blood levels, oxidative stress levels in serum, immune molecule and cytokine in the serum and lung tissue were tested. Morphology injury of lung tissue was detected by Hematoxylin and Eosin (HE) staining. Apoptosis rate of alveolar epithelial cells were determined by TdT-mediated dUTP Nick End Labeling (TUNEL) assay. Reduction of body weight gain was observed in the male group during the exposure time, while there was no significant reduction of body weight gain in the female group. Pathological findings of terminal bronchiole constriction, alveolar congestion, and erythrocyte exudation confirmed the lung to be the main target organ. An apparent pneumonocyte apoptotic effection was also observed. Oxidative stress with lipid peroxidation, which affect blood antioxidant enzyme levels and induce apoptosis of alveolar epithelial cells, are recognized as a potential mechanism leading to terminal bronchiole constriction, alveoli congestion, and exudates of erythrocyte.Implications: The odor pollutants greatly affect the health of operation workers in the waste treatment plant, and odor complaints are becoming a major problem. The aim of this work is to identify the lung tissue inflammatory response of SD rats with chronic exposure to methyl mercaptan vapor at close to the recommended workplace concentration. In this study, we used a dynamic exposure device and chronic exposure model of rats to evaluate the potential toxicity effects of methyl mercaptan. The results showed that methyl mercaptan may cause lung inflammatory response and extensive lung cell apoptosis. Oxidative damage, with lipid peroxidation and alterations in blood antioxidant enzyme levels, was observed following methyl mercaptan exposure. This is recognized as a potential mechanism for terminal bronchiolar constriction, alveolar congestion, and erythrocyte exudation.
科研通智能强力驱动
Strongly Powered by AbleSci AI