Multiview Diffusion Map Improves Prediction of Fluid Intelligence With Two Paradigms of fMRI Analysis

计算机科学 人工智能 模式识别(心理学) 降维 功能磁共振成像 主成分分析 静息状态功能磁共振成像 可视化 机器学习 生物 神经科学
作者
Guixia Pan,Li Xiao,Yuntong Bai,Tony W. Wilson,Julia M. Stephen,Vince D. Calhoun,Yu‐Ping Wang
出处
期刊:IEEE Transactions on Biomedical Engineering [Institute of Electrical and Electronics Engineers]
卷期号:68 (8): 2529-2539 被引量:16
标识
DOI:10.1109/tbme.2020.3048594
摘要

Objective: To understand the association between brain networks and behaviors of an individual, most studies build predictive models based on functional connectivity (FC) from a single dataset with linear analysis techniques. Such approaches may fail to capture the nonlinear structure of brain networks and neglect the complementary information contained in FC networks (FCNs) from multiple datasets. To address this challenging issue, we use multiview dimensionality reduction to extract a coherent low-dimensional representation of the FCNs from resting-state and emotion identification task-based functional magnetic resonance imaging (fMRI) datasets. Methods: We propose a scheme based on multiview diffusion map to extract intrinsic features while preserving the underlying geometric structure of high dimensional datasets. This method is robust to noise and small variations in the data. Results: After validation on the Philadelphia Neurodevelopmental Cohort data, the predictive model built from both resting-state and emotion identification task-based fMRI datasets outperforms the one using each individual fMRI dataset. In addition, the proposed model achieves better prediction performance than principal component analysis (PCA) and three other competing data fusion methods. Conclusion: Our framework for combing multiple FCNs in one predictive model exhibits improved prediction performance. Significance: To our knowledge, we demonstrate a first application of multiview diffusion map to successfully fuse different types of fMRI data for predicting fluid intelligence (gF).
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
chopin完成签到,获得积分10
刚刚
风之晨曦发布了新的文献求助10
1秒前
1秒前
爆米花应助momucy采纳,获得10
1秒前
小鱼呆呆脑完成签到,获得积分10
1秒前
zjw应助Zn采纳,获得10
1秒前
Ava应助拾光采纳,获得10
1秒前
2秒前
2秒前
利多卡因完成签到,获得积分10
2秒前
领导范儿应助程昱采纳,获得10
2秒前
田様应助西瓜采纳,获得10
3秒前
3秒前
Fareth发布了新的文献求助10
3秒前
3秒前
3秒前
leranlily完成签到,获得积分10
3秒前
科研通AI6应助zhaohuanjun采纳,获得10
4秒前
5秒前
华123发布了新的文献求助10
5秒前
5秒前
勤恳的雅青完成签到,获得积分10
6秒前
田様应助科研通管家采纳,获得10
6秒前
yu发布了新的文献求助10
6秒前
今后应助科研通管家采纳,获得10
6秒前
6秒前
田様应助张棋采纳,获得10
6秒前
SciGPT应助科研通管家采纳,获得10
6秒前
哈哈哈哈哈哈完成签到,获得积分10
6秒前
斯文败类应助科研通管家采纳,获得10
6秒前
科研通AI6应助清风与你采纳,获得30
6秒前
深情安青应助科研通管家采纳,获得30
6秒前
6秒前
科研通AI5应助科研通管家采纳,获得10
6秒前
小二郎应助科研通管家采纳,获得10
7秒前
7秒前
7秒前
7秒前
7秒前
微笑猫咪发布了新的文献求助10
7秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Manipulating the Mouse Embryo: A Laboratory Manual, Fourth Edition 1000
Comparison of spinal anesthesia and general anesthesia in total hip and total knee arthroplasty: a meta-analysis and systematic review 500
INQUIRY-BASED PEDAGOGY TO SUPPORT STEM LEARNING AND 21ST CENTURY SKILLS: PREPARING NEW TEACHERS TO IMPLEMENT PROJECT AND PROBLEM-BASED LEARNING 500
Founding Fathers The Shaping of America 500
Distinct Aggregation Behaviors and Rheological Responses of Two Terminally Functionalized Polyisoprenes with Different Quadruple Hydrogen Bonding Motifs 460
Writing to the Rhythm of Labor Cultural Politics of the Chinese Revolution, 1942–1976 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4576354
求助须知:如何正确求助?哪些是违规求助? 3995613
关于积分的说明 12369373
捐赠科研通 3669547
什么是DOI,文献DOI怎么找? 2022294
邀请新用户注册赠送积分活动 1056342
科研通“疑难数据库(出版商)”最低求助积分说明 943562